A241608 Number of length n+2 0..2 arrays with no consecutive three elements summing to more than 2.
10, 20, 40, 76, 147, 287, 556, 1077, 2091, 4057, 7868, 15264, 29613, 57445, 111438, 216184, 419380, 813563, 1578253, 3061693, 5939450, 11522085, 22351978, 43361147, 84117349, 163181309, 316559417, 614101361, 1191310271, 2311051970, 4483266305
Offset: 1
Keywords
Examples
Some solutions for n=5: ..1....0....2....0....1....2....2....1....0....1....1....0....1....1....1....0 ..0....1....0....0....0....0....0....1....1....0....0....0....0....0....0....1 ..1....0....0....0....1....0....0....0....0....1....1....0....1....0....0....0 ..0....0....0....0....0....0....0....1....1....1....0....1....1....1....0....0 ..0....2....0....0....0....1....0....1....1....0....0....0....0....0....1....0 ..1....0....1....0....1....0....1....0....0....1....2....0....1....1....1....0 ..1....0....0....2....0....0....1....0....0....0....0....2....1....0....0....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A241619.
Formula
Empirical: a(n) = a(n-1) + a(n-2) + 2*a(n-3) - a(n-5) - a(n-6).
Empirical g.f.: x*(10 + 10*x + 10*x^2 - 4*x^3 - 9*x^4 - 6*x^5) / (1 - x - x^2 - 2*x^3 + x^5 + x^6). - Colin Barker, Oct 30 2018