A241609 Number of length n+2 0..3 arrays with no consecutive three elements summing to more than 3.
20, 50, 125, 295, 711, 1730, 4175, 10077, 24377, 58928, 142396, 344201, 832011, 2010980, 4860690, 11748840, 28397936, 68640170, 165909570, 401018224, 969296175, 2342874854, 5662936565, 13687818660, 33084669767, 79968578621
Offset: 1
Keywords
Examples
Some solutions for n=5: ..1....2....3....2....1....0....3....0....1....1....1....1....1....3....2....0 ..0....1....0....1....2....1....0....0....1....1....0....1....1....0....0....1 ..1....0....0....0....0....2....0....0....0....0....1....0....1....0....0....1 ..0....0....1....0....0....0....1....0....1....2....2....0....1....2....3....1 ..0....0....2....1....1....1....1....0....1....1....0....1....0....1....0....0 ..0....2....0....2....2....1....1....0....0....0....0....0....1....0....0....0 ..3....1....1....0....0....1....0....1....1....2....0....0....1....2....1....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A241619.
Formula
Empirical: a(n) = 2*a(n-1) + 4*a(n-3) - 3*a(n-4) - a(n-5) - 3*a(n-6) + 2*a(n-7) + a(n-9) - a(n-10).
Empirical g.f.: x*(20 + 10*x + 25*x^2 - 35*x^3 - 19*x^4 - 22*x^5 + 20*x^6 + 3*x^7 + 6*x^8 - 10*x^9) / ((1 - x)*(1 - x - x^2 - 5*x^3 - 2*x^4 - x^5 + 2*x^6 - x^9)). - Colin Barker, Oct 30 2018