A241610 Number of length n+2 0..4 arrays with no consecutive three elements summing to more than 4.
35, 105, 315, 889, 2567, 7483, 21631, 62547, 181255, 524877, 1519408, 4399720, 12740155, 36888358, 106810847, 309276700, 895517750, 2592992001, 7508089778, 21739889599, 62948442860, 182269006155, 527765093824, 1528158677522
Offset: 1
Keywords
Examples
Some solutions for n=5 ..1....0....2....0....3....2....2....0....2....4....0....1....0....0....0....3 ..0....0....0....0....0....2....0....0....0....0....0....2....0....1....2....0 ..0....0....1....1....1....0....1....1....0....0....3....0....3....0....0....0 ..2....1....2....2....2....0....0....1....0....1....1....1....0....0....1....2 ..0....0....0....1....0....0....3....0....0....1....0....1....1....0....3....0 ..2....0....0....0....0....0....0....2....0....1....0....2....1....0....0....0 ..2....3....4....3....3....3....0....1....3....1....0....0....2....3....1....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 2*a(n-1) +a(n-2) +7*a(n-3) -4*a(n-4) -5*a(n-5) -12*a(n-6) +4*a(n-7) +3*a(n-8) +9*a(n-9) -3*a(n-10) -a(n-11) -3*a(n-12) +a(n-13) +a(n-15)
Comments