A241612 Number of length n+2 0..6 arrays with no consecutive three elements summing to more than 6.
84, 336, 1344, 5040, 19374, 75180, 289248, 1113348, 4294574, 16553380, 63784786, 245853464, 947613919, 3652200016, 14076313291, 54253546534, 209104275023, 805930938847, 3106231773354, 11972077046301, 46142909963825
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0....3....0....3....4....1....2....3....4....1....3....4....2....4....0....2 ..0....2....1....0....1....1....0....0....0....5....2....1....0....0....0....3 ..1....1....3....0....1....4....1....1....2....0....1....0....2....1....3....0 ..3....0....1....3....3....0....1....1....0....1....1....2....3....3....0....3 ..0....1....0....0....0....0....0....3....0....1....2....0....1....1....2....2 ..3....1....2....0....2....1....4....0....0....0....0....0....1....1....4....1 ..2....2....4....0....4....3....0....0....3....4....0....1....1....3....0....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 3*a(n-1) +a(n-2) +16*a(n-3) -20*a(n-4) -18*a(n-5) -65*a(n-6) +65*a(n-7) +41*a(n-8) +132*a(n-9) -130*a(n-10) -49*a(n-11) -144*a(n-12) +153*a(n-13) +31*a(n-14) +113*a(n-15) -115*a(n-16) -11*a(n-17) -60*a(n-18) +55*a(n-19) +4*a(n-20) +23*a(n-21) -21*a(n-22) -a(n-23) -5*a(n-24) +4*a(n-25) +a(n-27) -a(n-28)
Comments