A241614 Number of length n+2 0..8 arrays with no consecutive three elements summing to more than 8.
165, 825, 4125, 19305, 92697, 449295, 2159025, 10380183, 50011289, 240772037, 1158816022, 5578909654, 26858310661, 129293730680, 622425498913, 2996413264570, 14424866547232, 69441979827433, 334297722590641
Offset: 1
Keywords
Examples
Some solutions for n=5 ..3....5....1....3....5....3....2....2....7....1....5....3....5....3....2....1 ..1....2....2....5....1....3....4....2....0....3....0....3....1....0....3....1 ..2....0....0....0....1....1....2....3....1....0....1....2....2....0....0....4 ..0....2....1....2....0....0....2....1....2....1....6....0....4....2....2....3 ..2....2....0....4....1....3....4....3....0....3....1....0....2....1....0....1 ..0....3....0....0....2....1....0....0....3....3....0....4....0....4....5....3 ..6....1....0....2....3....1....4....0....4....1....5....3....6....2....2....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 3*a(n-1) +4*a(n-2) +34*a(n-3) -26*a(n-4) -80*a(n-5) -316*a(n-6) +112*a(n-7) +421*a(n-8) +1394*a(n-9) -393*a(n-10) -1321*a(n-11) -3584*a(n-12) +1018*a(n-13) +2738*a(n-14) +6358*a(n-15) -1691*a(n-16) -3941*a(n-17) -8170*a(n-18) +1818*a(n-19) +4171*a(n-20) +7970*a(n-21) -1452*a(n-22) -3430*a(n-23) -6029*a(n-24) +819*a(n-25) +2183*a(n-26) +3575*a(n-27) -366*a(n-28) -1074*a(n-29) -1671*a(n-30) +117*a(n-31) +438*a(n-32) +631*a(n-33) -34*a(n-34) -129*a(n-35) -177*a(n-36) +6*a(n-37) +36*a(n-38) +44*a(n-39) -a(n-40) -5*a(n-41) -6*a(n-42) +a(n-44) +a(n-45)
Comments