cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241615 Number of length n+2 0..9 arrays with no consecutive three elements summing to more than 9.

Original entry on oeis.org

220, 1210, 6655, 34243, 180829, 963886, 5093737, 26932543, 142701909, 755538278, 3999038946, 21172904049, 112098384491, 593455432350, 3141868198978, 16633824615067, 88062718713584, 466221475528171, 2468274573927916
Offset: 1

Views

Author

R. H. Hardin, Apr 26 2014

Keywords

Comments

Column 9 of A241619

Examples

			Some solutions for n=5
..0....1....0....1....1....7....5....5....1....0....0....1....1....1....1....0
..5....2....1....2....1....0....1....1....3....1....1....2....2....0....7....1
..2....1....3....1....2....0....0....3....1....2....2....4....1....0....1....7
..0....3....1....5....0....4....1....2....2....5....3....3....1....0....0....0
..3....1....0....0....0....0....3....0....4....0....2....0....5....1....4....1
..2....4....8....1....1....3....0....4....0....1....2....3....1....8....1....3
..3....1....1....1....2....3....6....5....4....2....4....4....0....0....2....4
		

Programs

  • Maple
    r:= [seq(seq([i,j],j=0..9-i),i=0..9)]:
    T:= Matrix(55,55,proc(i,j) if r[i][1]=r[j][2] and r[i][1]+r[i][2]+r[j][1]<=9 then 1 else 0 fi end proc):
    U[0]:= Vector(55,1):
    for n from 1 to 50 do U[n]:= T . U[n-1] od:
    seq(U[0]^%T . U[j], j=1..50); # Robert Israel, Sep 03 2019

Formula

Empirical: a(n) = 4*a(n-1) +2*a(n-2) +44*a(n-3) -69*a(n-4) -79*a(n-5) -507*a(n-6) +572*a(n-7) +514*a(n-8) +2973*a(n-9) -3097*a(n-10) -1820*a(n-11) -10364*a(n-12) +10800*a(n-13) +4269*a(n-14) +25019*a(n-15) -25821*a(n-16) -6914*a(n-17) -44207*a(n-18) +44275*a(n-19) +8829*a(n-20) +59359*a(n-21) -57787*a(n-22) -9308*a(n-23) -62456*a(n-24) +58989*a(n-25) +8291*a(n-26) +52174*a(n-27) -48385*a(n-28) -5846*a(n-29) -35493*a(n-30) +32403*a(n-31) +3452*a(n-32) +19719*a(n-33) -17810*a(n-34) -1563*a(n-35) -9053*a(n-36) +8178*a(n-37) +608*a(n-38) +3390*a(n-39) -3025*a(n-40) -167*a(n-41) -1072*a(n-42) +973*a(n-43) +42*a(n-44) +259*a(n-45) -227*a(n-46) -6*a(n-47) -56*a(n-48) +52*a(n-49) +a(n-50) +7*a(n-51) -6*a(n-52) -a(n-54) +a(n-55).
Empirical formula verified: see link. - Robert Israel, Sep 03 2019