A241617 Number of length n+2 0..11 arrays with no consecutive three elements summing to more than 11.
364, 2366, 15379, 93457, 583089, 3672032, 22925695, 143212290, 896486942, 5607651699, 35066570585, 219346221757, 1372020569832, 8581465964097, 53675165117172, 335729445819781, 2099913330669171, 13134499972175218
Offset: 1
Keywords
Examples
Some solutions for n=5 ..6....3....3....0....6....6....6....0....0....3....3....3....6....3....0....3 ..0....3....6....0....3....0....0....1....3....0....0....0....0....0....0....0 ..4....2....1....6....2....3....0....3....0....7....0....1....4....2....0....1 ..5....2....2....0....5....0....7....0....4....3...11....1....6....1....4....4 ..2....1....5....1....4....2....3....6....0....1....0....7....0....1....3....5 ..0....0....3....4....0....4....0....3....7....4....0....0....5....4....0....2 ..9....2....1....6....2....1....4....2....2....5....2....4....2....6....0....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- R. H. Hardin, Empirical recurrence of order 78
Formula
Empirical recurrence of order 78 (see link above)
Comments