This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241619 #10 Jul 23 2025 11:14:46 %S A241619 4,10,6,20,20,9,35,50,40,13,56,105,125,76,19,84,196,315,295,147,28, %T A241619 120,336,686,889,711,287,41,165,540,1344,2254,2567,1730,556,60,220, %U A241619 825,2430,5040,7586,7483,4175,1077,88,286,1210,4125,10242,19374,25774,21631,10077 %N A241619 T(n,k)=Number of length n+2 0..k arrays with no consecutive three elements summing to more than k. %C A241619 Table starts %C A241619 ...4...10....20.....35......56.......84......120.......165.......220........286 %C A241619 ...6...20....50....105.....196......336......540.......825......1210.......1716 %C A241619 ...9...40...125....315.....686.....1344.....2430......4125......6655......10296 %C A241619 ..13...76...295....889....2254.....5040....10242.....19305.....34243......57772 %C A241619 ..19..147...711...2567....7586....19374....44274.....92697....180829.....332761 %C A241619 ..28..287..1730...7483...25774....75180...193194....449295....963886....1934647 %C A241619 ..41..556..4175..21631...86828...289248...835812...2159025...5093737...11151140 %C A241619 ..60.1077.10077..62547..292621..1113348..3617703..10380183..26932543...64309245 %C A241619 ..88.2091.24377.181255..988303..4294574.15692003..50011289.142701909..371651553 %C A241619 .129.4057.58928.524877.3335451.16553380.68014233.240772037.755538278.2146210209 %H A241619 R. H. Hardin, <a href="/A241619/b241619.txt">Table of n, a(n) for n = 1..10011</a> %F A241619 Empirical for column k, apparently a recurrence of order (k+1)*(k+2)/2: %F A241619 k=1: a(n) = a(n-1) +a(n-3) %F A241619 k=2: a(n) = a(n-1) +a(n-2) +2*a(n-3) -a(n-5) -a(n-6) %F A241619 k=3: a(n) = 2*a(n-1) +4*a(n-3) -3*a(n-4) -a(n-5) -3*a(n-6) +2*a(n-7) +a(n-9) -a(n-10) %F A241619 k=4: [order 15] %F A241619 k=5: [order 21] %F A241619 k=6: [order 28] %F A241619 k=7: [order 36] %F A241619 k=8: [order 45] %F A241619 k=9: [order 55] %F A241619 k=10: [order 66] %F A241619 k=11: [order 78] %F A241619 k=12: [order 91] %F A241619 Empirical for row n, apparently a polynomial of degree n+2: %F A241619 n=1: a(n) = (1/6)*n^3 + 1*n^2 + (11/6)*n + 1 %F A241619 n=2: a(n) = (1/12)*n^4 + (2/3)*n^3 + (23/12)*n^2 + (7/3)*n + 1 %F A241619 n=3: a(n) = (1/24)*n^5 + (5/12)*n^4 + (13/8)*n^3 + (37/12)*n^2 + (17/6)*n + 1 %F A241619 n=4: [polynomial of degree 6] %F A241619 n=5: [polynomial of degree 7] %F A241619 n=6: [polynomial of degree 8] %F A241619 n=7: [polynomial of degree 9] %F A241619 From _Robert Israel_, Sep 04 2019: (Start) %F A241619 Column k satisfies a recurrence of order (k+1)*(k+2)/2, since a(n)=e^T T^n e where T is a (k+1)*(k+2)/2 matrix and e the vector of all 1's (see proofs at A241615 and A241618). %F A241619 Row n is the Ehrhart polynomial of degree n+2 corresponding to the polytope {(x(1),...,x(n+2)): all x(i)>=0, x(i)+x(i+1)+x(i+2)<=1 for i=1..n}, whose vertices have all entries in {0,1}. (End) %e A241619 Some solutions for n=5 k=4 %e A241619 ..1....0....2....1....0....2....0....1....0....0....0....2....1....0....1....2 %e A241619 ..0....0....1....3....0....0....4....2....1....0....1....1....3....0....0....1 %e A241619 ..0....3....0....0....0....1....0....1....3....0....0....0....0....2....1....0 %e A241619 ..0....0....0....1....2....0....0....0....0....0....1....0....1....1....1....2 %e A241619 ..2....0....3....0....0....2....0....0....0....0....2....1....0....0....0....0 %e A241619 ..0....1....0....1....2....1....2....0....1....0....0....1....1....0....3....1 %e A241619 ..0....0....0....1....0....0....2....4....2....2....0....0....2....0....0....0 %p A241619 for m from 1 to 12 do %p A241619 r:= [seq(seq([i,j],j=0..m-i),i=0..m)]; %p A241619 T[m]:= Matrix((m+1)*(m+2)/2,(m+1)*(m+2)/2, proc(i, j) if r[i][1]=r[j][2] and r[i][1]+r[i][2]+r[j][1]<=m then 1 else 0 fi end proc): %p A241619 U[m,0]:= Vector((m+1)*(m+2)/2,1); %p A241619 od: %p A241619 R:= NULL: %p A241619 for i from 2 to 12 do %p A241619 for j from 1 to i-1 do %p A241619 U[i-j,j]:= T[i-j] . U[i-j,j-1]; %p A241619 R:= R, convert(U[i-j,j],`+`) %p A241619 od od: %p A241619 R; # _Robert Israel_, Sep 04 2019 %Y A241619 Column 1 is A000930(n+4) %Y A241619 Row 1 is A000292(n+1) %Y A241619 Row 2 is A002415(n+2) %Y A241619 Row 3 is A006414 %Y A241619 Row 4 is A114244 %K A241619 nonn,tabl %O A241619 1,1 %A A241619 _R. H. Hardin_, Apr 26 2014