A241620 Number of length 5+2 0..n arrays with no consecutive three elements summing to more than n.
19, 147, 711, 2567, 7586, 19374, 44274, 92697, 180829, 332761, 583089, 980031, 1589108, 2497436, 3818676, 5698689, 8321943, 11918719, 16773163, 23232231, 31715574, 42726410, 56863430, 74833785, 97467201, 125731269, 160747957
Offset: 1
Keywords
Examples
Some solutions for n=5: ..3....3....1....0....2....2....2....3....0....0....0....2....1....5....0....0 ..2....2....3....3....2....0....1....2....3....3....5....0....1....0....1....0 ..0....0....1....0....1....3....0....0....1....0....0....2....3....0....1....2 ..0....0....1....0....1....1....2....1....1....0....0....1....0....0....1....2 ..2....1....0....3....0....1....1....3....1....0....4....0....1....0....1....1 ..0....3....0....0....0....1....0....0....2....2....1....2....1....2....1....0 ..3....0....3....1....1....0....2....2....2....1....0....3....0....2....3....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 5 of A241619.
Formula
Empirical: a(n) = (47/5040)*n^7 + (47/360)*n^6 + (7/9)*n^5 + (23/9)*n^4 + (3599/720)*n^3 + (2093/360)*n^2 + (26/7)*n + 1.
Conjectures from Colin Barker, Oct 30 2018: (Start)
G.f.: x*(19 - 5*x + 67*x^2 - 69*x^3 + 56*x^4 - 28*x^5 + 8*x^6 - x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)