A241621 Number of length 6+2 0..n arrays with no consecutive three elements summing to more than n.
28, 287, 1730, 7483, 25774, 75180, 193194, 449295, 963886, 1934647, 3672032, 6645821, 11544820, 19351984, 31437420, 49671909, 76563768, 115422055, 170549302, 247467143, 353178386, 496469260, 688255750, 941978115, 1274047866
Offset: 1
Keywords
Examples
Some solutions for n=5: ..2....4....0....0....2....1....1....0....0....0....1....1....1....2....0....0 ..1....0....3....3....2....3....1....3....3....2....3....2....3....0....0....2 ..0....0....1....1....1....0....0....1....1....0....0....1....0....2....4....0 ..3....5....1....0....0....0....2....0....1....0....2....2....2....1....0....0 ..0....0....3....2....0....1....0....0....2....2....0....0....0....1....1....2 ..1....0....0....0....1....1....0....0....0....3....0....0....1....0....0....1 ..3....2....1....1....0....1....5....3....2....0....3....2....0....1....0....2 ..1....2....2....0....1....1....0....2....1....2....1....0....1....0....4....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 6 of A241619.
Formula
Empirical: a(n) = (13/2880)*n^8 + (13/180)*n^7 + (145/288)*n^6 + (719/360)*n^5 + (14197/2880)*n^4 + (2789/360)*n^3 + (121/16)*n^2 + (251/60)*n + 1.
Conjectures from Colin Barker, Oct 30 2018: (Start)
G.f.: x*(28 + 35*x + 155*x^2 - 107*x^3 + 127*x^4 - 84*x^5 + 36*x^6 - 9*x^7 + x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)