This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241627 #10 Aug 27 2021 03:17:13 %S A241627 2,8,29,81,205,469,1013,2059,4021,7558,13780,24440,42358,71867,119715, %T A241627 196084,316362,503410,791043,1228636,1888003,2872541,4330299,6471778, %U A241627 9594556,14116745,20622825,29925512,43149302,61843197,88130983,124912824,176132457 %N A241627 Number of compositions of n with exactly two descents. %H A241627 Joerg Arndt and Alois P. Heinz, <a href="/A241627/b241627.txt">Table of n, a(n) for n = 6..1000</a> %e A241627 a(6) = 2: [3,2,1], [2,1,2,1]. %e A241627 a(7) = 8: [4,2,1], [3,2,1,1], [3,1,2,1], [1,3,2,1], [2,1,3,1], [1,2,1,2,1], [2,1,1,2,1], [2,1,2,1,1]. %p A241627 b:= proc(n, i) option remember; %p A241627 `if`(n=0, 1, convert(series(add(b(n-j, j)* %p A241627 `if`(j<i, x, 1), j=1..n), x, 3), polynom)) %p A241627 end: %p A241627 a:= n-> coeff(b(n, 0), x, 2): %p A241627 seq(a(n), n=6..50); %t A241627 k = 2; %t A241627 b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n - j, j]* %t A241627 If[j < i, x, 1], {j, n}] + O[x]^(k+1)]; %t A241627 a[n_] := SeriesCoefficient[b[n, 0], {x, 0, k}]; %t A241627 a /@ Range[6, 50] (* _Jean-François Alcover_, Aug 27 2021, after Maple code *) %Y A241627 Column k=2 of A238343 and of A238344. %K A241627 nonn %O A241627 6,1 %A A241627 _Joerg Arndt_ and _Alois P. Heinz_, Apr 26 2014