cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241659 Primes p such that p^3 + 2 is semiprime.

This page as a plain text file.
%I A241659 #10 Feb 05 2025 16:00:59
%S A241659 2,11,13,17,19,23,31,41,53,59,89,101,131,137,149,193,211,223,227,229,
%T A241659 233,239,251,271,293,317,331,359,401,449,461,557,563,571,593,599,619,
%U A241659 641,659,677,691,719,739,751,809,821,853,929,971,991,1009,1013,1039,1051
%N A241659 Primes p such that p^3 + 2 is semiprime.
%H A241659 K. D. Bajpai, <a href="/A241659/b241659.txt">Table of n, a(n) for n = 1..10000</a>
%e A241659 11 is prime and appears in the sequence because 11^3 + 2 = 1333 = 31 * 43, which is a semiprime.
%e A241659 17 is prime and appears in the sequence because 17^3 + 2 = 4915 =  5 * 983, which is a semiprime.
%e A241659 37 is prime but does not appear in the sequence because 37^3 + 2 = 50655 =  3 * 5 * 11 * 983, which is not a semiprime.
%p A241659 with(numtheory): KD:= proc() local a, b, k; k:=ithprime(n); a:=bigomega(k^3+2); if a=2 then RETURN (k); fi; end: seq(KD(), n=1..500);
%t A241659 A241659 = {}; Do[t = Prime[n]; If[PrimeOmega[t^3 + 2] == 2, AppendTo[A241659, t]], {n, 500}]; A241659
%t A241659 (*For the b-file*) c = 0; Do[t = Prime[n]; If[PrimeOmega[t^3 + 2] == 2, c++; Print[c, "  ", t]], {n, 1,6*10^4}];
%t A241659 Select[Prime[Range[200]],PrimeOmega[#^3+2]==2&] (* _Harvey P. Dale_, Feb 05 2025 *)
%o A241659 (PARI) s=[]; forprime(p=2, 1200, if(bigomega(p^3+2)==2, s=concat(s, p))); s \\ _Colin Barker_, Apr 27 2014
%Y A241659 Cf. A001358, A063637, A063638, A228183, A237627, A241483, A241493.
%K A241659 nonn
%O A241659 1,1
%A A241659 _K. D. Bajpai_, Apr 26 2014