This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241664 #21 Mar 20 2018 16:15:37 %S A241664 0,1,1,1,2,1,3,1,2,1,3,1,4,1,2,1,3,1,4,1,3,1,4,1,3,1,3,1,4,1,5,1,3,1, %T A241664 3,1,4,1,4,1,5,1,6,1,3,1,4,1,4,1,3,1,4,1,4,1,4,1,5,1,6,1,3,1,4,1,5,1, %U A241664 4,1,5,1,6,1,3,1,4,1,5,1,4,1,5,1,4,1,4 %N A241664 Number of iterations of A058026 needed to reach either 0 or 1. %C A241664 I conjecture that, for n>3 and n odd, we have a(n)>=log((49/15)n)/log(7). %H A241664 Reinhard Zumkeller, <a href="/A241664/b241664.txt">Table of n, a(n) for n = 1..10000</a> %H A241664 C. Defant, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Defant/defant5.html">On Arithmetic Functions Related to Iterates of the Schemmel Totient Functions</a>, J. Int. Seq. 18 (2015) # 15.2.1 %H A241664 Colin Defant, <a href="/A241664/a241664_1.py.txt">Python program for A241664</a> %e A241664 A058026(7)=5, A058026(5)=3, A058026(3)=1. As it takes 3 iterations to reach 1, a(7)=3. %o A241664 The link above provides a Python program. Enter m=2 as well as starting and ending values of n. The third string of numbers will be this sequence. %o A241664 (Haskell) %o A241664 a241664 n = fst $ until ((<= 1) . snd) %o A241664 (\(u, v) -> (u + 1, a058026 v)) (0, n) %o A241664 -- _Reinhard Zumkeller_, May 10 2014 %K A241664 nonn,look %O A241664 1,5 %A A241664 _Colin Defant_, Apr 26 2014 %E A241664 a(1) corrected by _Reinhard Zumkeller_, May 10 2014