This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241665 #24 Feb 03 2025 13:52:08 %S A241665 1,1,1,1,1,1,2,1,1,1,3,1,2,1,1,1,3,1,2,1,1,1,3,1,2,1,1,1,3,1,2,1,1,1, %T A241665 2,1,2,1,1,1,3,1,2,1,1,1,3,1,2,1,1,1,3,1,3,1,1,1,4,1,2,1,1,1,2,1,2,1, %U A241665 1,1,3,1,2,1,1,1,2,1,2,1,1,1,3,1,3,1,1,1,4,1,2,1,1,1,2,1,2,1,1,1,3,1,2,1,1 %N A241665 Number of iterations of A241663 needed to reach either 0 or 1. %C A241665 It might be more natural to define the initial terms as a(0) = a(1) = 0 for the sake of recurrence. - _Antti Karttunen_, Oct 01 2018 %H A241665 Antti Karttunen, <a href="/A241665/b241665.txt">Table of n, a(n) for n = 1..65537</a> %H A241665 C. Defant, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Defant/defant5.html">On Arithmetic Functions Related to Iterates of the Schemmel Totient Functions</a>, J. Int. Seq. 18 (2015) # 15.2.1 %H A241665 Colin Defant, <a href="/A241665/a241665.py.txt">Python program</a> %e A241665 A241663(11)=7, A241663(7)=3, A241663(3)=0. Thus, a(11)=3. %o A241665 (Python) # See Defant link. Enter m=4, as well as starting and ending values of n. The third string of numbers will be this sequence. %o A241665 (PARI) %o A241665 A241663(n) = {my(f = factor(n)); prod(i=1, #f~, if ((f[i, 1] == 2) || (f[i, 1] == 3), 0, f[i, 1]^(f[i, 2]-1)*(f[i, 1]-4))); } \\ From A241663 %o A241665 A241665(n) = { my(s=(1==n)); while(n>1, n = A241663(n); s++); (s); }; \\ _Antti Karttunen_, Oct 01 2018 %Y A241665 Cf. A241663, A241668. %K A241665 nonn %O A241665 1,7 %A A241665 _Colin Defant_, Apr 26 2014 %E A241665 More terms from _Alois P. Heinz_, Apr 30 2014 %E A241665 Terms a(88) .. a(105) from _Antti Karttunen_, Oct 01 2018