This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241701 #21 Apr 30 2017 09:49:38 %S A241701 1,1,1,2,1,2,2,3,4,4,8,2,5,13,5,6,21,12,8,33,27,3,10,50,53,11,12,73, %T A241701 98,31,15,106,174,78,5,18,150,296,175,22,22,209,486,363,72,27,289,781, %U A241701 715,204,8,32,393,1222,1342,510,43,38,529,1874,2421,1168,159 %N A241701 Number T(n,k) of Carlitz compositions of n with exactly k descents; triangle T(n,k), n>=0, 0<=k<=floor(n/3), read by rows. %C A241701 No two adjacent parts of a Carlitz composition are equal. %H A241701 Alois P. Heinz, <a href="/A241701/b241701.txt">Rows n = 0..250, flattened</a> %F A241701 Sum_{k=0..floor(n/3)} (k+1) * T(n,k) = A285994(n) (for n>0). %e A241701 T(6,0) = 4: [6], [1,5], [2,4], [1,2,3]. %e A241701 T(6,1) = 8: [4,2], [5,1], [3,1,2], [1,3,2], [1,4,1], [2,3,1], [2,1,3], [1,2,1,2]. %e A241701 T(6,2) = 2: [3,2,1], [2,1,2,1]. %e A241701 T(7,0) = 5: [7], [3,4], [1,6], [2,5], [1,2,4]. %e A241701 T(7,1) = 13: [4,3], [6,1], [5,2], [2,1,4], [4,1,2], [1,4,2], [2,3,2], [3,1,3], [1,5,1], [2,4,1], [1,2,3,1], [1,3,1,2], [1,2,1,3]. %e A241701 T(7,2) = 5: [4,2,1], [2,1,3,1], [3,1,2,1], [1,3,2,1], [1,2,1,2,1]. %e A241701 Triangle T(n,k) begins: %e A241701 00: 1; %e A241701 01: 1; %e A241701 02: 1; %e A241701 03: 2, 1; %e A241701 04: 2, 2; %e A241701 05: 3, 4; %e A241701 06: 4, 8, 2; %e A241701 07: 5, 13, 5; %e A241701 08: 6, 21, 12; %e A241701 09: 8, 33, 27, 3; %e A241701 10: 10, 50, 53, 11; %e A241701 11: 12, 73, 98, 31; %e A241701 12: 15, 106, 174, 78, 5; %e A241701 13: 18, 150, 296, 175, 22; %e A241701 14: 22, 209, 486, 363, 72; %e A241701 15: 27, 289, 781, 715, 204, 8; %p A241701 b:= proc(n, i) option remember; `if`(n=0, 1, expand( %p A241701 add(`if`(j=i, 0, b(n-j, j)*`if`(j<i, x, 1)), j=1..n))) %p A241701 end: %p A241701 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)): %p A241701 seq(T(n), n=0..20); %t A241701 b[n_, i_] := b[n, i] = If[n == 0, 1, Expand[Sum[If[j == i, 0, b[n-j, j]*If[j<i, x, 1]], {j, 1, n}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 20}] // Flatten (* _Jean-François Alcover_, Feb 13 2015, after _Alois P. Heinz_ *) %Y A241701 Columns k=0-10 give: A000009, A241691, A241692, A241693, A241694, A241695, A241696, A241697, A241698, A241699, A241700. %Y A241701 Row sums give A003242. %Y A241701 T(3n,n) = A000045(n+1). %Y A241701 T(3n+1,n) = A129715(n) for n>0. %Y A241701 Cf. A238344, A285994. %K A241701 nonn,tabf %O A241701 0,4 %A A241701 _Alois P. Heinz_, Apr 27 2014