This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241716 #10 Dec 09 2018 13:34:46 %S A241716 2,3,5,7,11,13,17,41,43,47,61,79,89,101,107,139,157,181,199,239,271, %T A241716 307,311,331,337,347,349,379,397,409,421,431,479,487,499,521,523,541, %U A241716 571,607,613,641,643,661,673,701,719,761,769,811,823,829,839,877,881,883 %N A241716 Primes p such that p^3 - 2 is semiprime. %H A241716 K. D. Bajpai, <a href="/A241716/b241716.txt">Table of n, a(n) for n = 1..9380</a> %e A241716 11 is prime and appears in the sequence because 11^3 - 2 = 1329 = 3 * 443, which is a semiprime. %e A241716 17 is prime and appears in the sequence because 17^3 - 2 = 4911 = 3 * 1637, which is a semiprime. %e A241716 23 is prime but does not appear in the sequence because 23^3 - 2 = 12165 = 3 * 5 * 811, which is not a semiprime. %p A241716 with(numtheory):A241716:= proc() local k; k:=ithprime(x); if bigomega(k^3-2)=2 then RETURN (k); fi; end: seq(A241716(), x=1..500); %t A241716 A241716 = {}; Do[t = Prime[n]; If[PrimeOmega[t^3 - 2] == 2, AppendTo[A241716, t]], {n, 500}]; A241716 %t A241716 Select[Prime[Range[200]],PrimeOmega[#^3-2]==2&] (* _Harvey P. Dale_, Dec 09 2018 *) %Y A241716 Cf. A001358, A063637, A063638, A072381, A082919, A145292, A228183, A237627, A241483, A241493, A241659. %K A241716 nonn %O A241716 1,1 %A A241716 _K. D. Bajpai_, Apr 27 2014