This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241717 #41 Feb 28 2018 15:05:35 %S A241717 1,3,3,9,3,9,15,21,3,9,15,21,27,33,39,45,3,9,15,21,27,33,39,45,51,57, %T A241717 63,69,75,81,87,93,3,9,15,21,27,33,39,45,51,57,63,69,75,81,87,93,99, %U A241717 105,111,117,123,129,135,141,147,153,159,165,171 %N A241717 The number of P-positions in the game of Nim with up to 3 piles, allowing for piles of zero, such that the number of objects in the largest pile is n. %C A241717 This is the finite difference of A236305. %C A241717 Starting from index 1 all elements are divisible by 3, and can be grouped into sets of size 2^k of an arithmetic progression 6n-3. %C A241717 It appears that the sum of all terms of the first n rows of triangle gives A000302(n-1), see Example section. - _Omar E. Pol_, May 01 2015 %H A241717 T. Khovanova and J. Xiong, <a href="http://arxiv.org/abs/1405.5942">Nim Fractals</a>, arXiv:1405.594291 [math.CO] (2014), p. 6 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Khovanova/khova6.html">J. Int. Seq. 17 (2014) # 14.7.8</a>. %F A241717 If b = floor(log_2(n)) is the number of digits in the binary representation of n and c = n + 1 - 2^b, then a(n) = 6*c-3. %e A241717 If the largest number is 1, then there should be exactly two piles of size 1 and one empty pile. There are 3 ways to permute this configuration, so a(1)=3. %e A241717 From _Omar E. Pol_, Feb 26 2015: (Start) %e A241717 Also written as an irregular triangle in which the row lengths are the terms of A011782, the sequence begins: %e A241717 1; %e A241717 3; %e A241717 3, 9; %e A241717 3, 9, 15, 21; %e A241717 3, 9, 15, 21, 27, 33, 39, 45; %e A241717 3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93; %e A241717 ... %e A241717 Observation: the first six terms of the right border coincide with the first six terms of A068156. %e A241717 (End) %e A241717 From _Omar E. Pol_, Apr 20 2015: (Start) %e A241717 An illustration of initial terms in the fourth quadrant of the square grid: %e A241717 --------------------------------------------------------------------------- %e A241717 n a(n) Compact diagram %e A241717 --------------------------------------------------------------------------- %e A241717 . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A241717 0 1 |_| |_ |_ _ _ |_ _ _ _ _ _ _ | %e A241717 1 3 |_ _| | |_ _ | |_ _ _ _ _ _ | | %e A241717 2 3 | |_ _| |_ | | |_ _ _ _ _ | | | %e A241717 3 9 |_ _ _ _| | | | |_ _ _ _ | | | | %e A241717 4 3 | | | |_ _| | | |_ _ _ | | | | | %e A241717 5 9 | | |_ _ _ _| | |_ _ | | | | | | %e A241717 6 15 | |_ _ _ _ _ _| |_ | | | | | | | %e A241717 7 21 |_ _ _ _ _ _ _ _| | | | | | | | | %e A241717 8 3 | | | | | | | |_ _| | | | | | | | %e A241717 9 9 | | | | | | |_ _ _ _| | | | | | | %e A241717 10 15 | | | | | |_ _ _ _ _ _| | | | | | %e A241717 11 21 | | | | |_ _ _ _ _ _ _ _| | | | | %e A241717 12 27 | | | |_ _ _ _ _ _ _ _ _ _| | | | %e A241717 13 33 | | |_ _ _ _ _ _ _ _ _ _ _ _| | | %e A241717 14 39 | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| | %e A241717 15 45 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| %e A241717 . %e A241717 It appears that a(n) is also the number of cells in the n-th region of the diagram, and A236305(n) is also the total number of cells after n-th stage. %e A241717 (End) %t A241717 Table[Length[Select[Flatten[Table[{n, k, BitXor[n, k]}, {n, 0, a}, {k, 0, a}], 1], Max[#] == a &]], {a, 0, 100}] %Y A241717 Cf. A011782, A068156, A236305 (partial sums), A241718 (4 piles), A241731 (5 piles). %K A241717 nonn %O A241717 0,2 %A A241717 _Tanya Khovanova_ and _Joshua Xiong_, Apr 27 2014