A241718 The number of P-positions in the game of Nim with up to 4 piles, allowing for piles of zero, such that the number of objects in the largest pile is n.
1, 7, 13, 43, 25, 79, 133, 211, 49, 151, 253, 379, 457, 607, 757, 931, 97, 295, 493, 715, 889, 1135, 1381, 1651, 1681, 1975, 2269, 2587, 2857, 3199, 3541, 3907, 193, 583, 973, 1387, 1753, 2191, 2629, 3091, 3313, 3799, 4285, 4795, 5257, 5791, 6325
Offset: 0
Keywords
Examples
If the largest pile is 2, then there are 6 positions that are permutations of (0,0,2,2) plus 6 positions that are permutations of (1,1,2,2) and one position (2,2,2,2). Therefore, a(2)=13.
Links
- T. Khovanova and J. Xiong, Nim Fractals, arXiv:1405.594291 [math.CO], 2014, p. 8 and J. Int. Seq. 17 (2014) # 14.7.8.
Programs
-
Mathematica
Table[Length[Select[Flatten[Table[{n, k, j, BitXor[n, k, j]}, {n, 0, a}, {k, 0, a}, {j, 0, a}], 2], Max[#] == a &]], {a, 0, 50}]
Formula
If b = floor(log_2(n)) is the number of digits in the binary representation of n and c = n + 1 - 2^b, then a(n) = (12*c-6)*2^b + a(c-1).
Comments