This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241738 #5 May 06 2014 15:05:24 %S A241738 1,0,0,2,1,2,7,5,7,17,14,18,39,32,42,76,71,88,157,143,182,293,292,357, %T A241738 562,558,692,1023,1060,1286,1854,1932,2347,3246,3464,4153,5639,6030, %U A241738 7207,9526,10324,12240,15912,17311,20444,26104,28585,33567,42326,46469 %N A241738 Number of partitions p of n such that (number of numbers in p of form 3k+1) = (number of numbers in p of form 3k+2). %C A241738 Each number in p is counted once, regardless of its multiplicity. %F A241738 a(n) + A241737(n) + A241839(n) = A000041(n) for n >= 0. %e A241738 a(8) counts these 7 partitions: 5111, 422, 3221, 3211, 22211, 221111, 2111111. %t A241738 z = 40; f[n_] := f[n] = IntegerPartitions[n]; s[k_, p_] := Count[Mod[DeleteDuplicates[p], 3], k]; %t A241738 Table[Count[f[n], p_ /; s[1, p] < s[2, p]], {n, 0, z}] (* A241737 *) %t A241738 Table[Count[f[n], p_ /; s[1, p] == s[2, p]], {n, 0, z}] (* A241738 *) %t A241738 Table[Count[f[n], p_ /; s[1, p] > s[2, p]], {n, 0, z}] (* A241739 *) %Y A241738 Cf. A241737, A241739, A241740, A241743. %K A241738 nonn,easy %O A241738 0,4 %A A241738 _Clark Kimberling_, Apr 28 2014