This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241741 #5 May 06 2014 15:05:38 %S A241741 1,1,1,1,2,3,3,5,9,11,14,22,29,36,51,66,83,107,139,170,216,273,340, %T A241741 415,520,635,778,952,1177,1414,1724,2094,2527,3038,3691,4411,5286, %U A241741 6345,7586,9008,10778,12796,15163,17979,21288,25059,29608,34861,40927,48035 %N A241741 Number of partitions p of n such that (number of numbers in p of form 3k+2) = (number of numbers in p of form 3k). %C A241741 Each number in p is counted once, regardless of its multiplicity. %F A241741 a(n) + A241740(n) + A241842(n) = A000041(n) for n >= 0. %e A241741 a(8) counts these 9 partitions: 71, 62, 53, 44, 41111, 332, 3221, 32111, 11111111. %t A241741 z = 40; f[n_] := f[n] = IntegerPartitions[n]; s[k_, p_] := Count[Mod[DeleteDuplicates[p], 3], k]; %t A241741 Table[Count[f[n], p_ /; s[2, p] < s[0, p]], {n, 0, z}] (* A241740 *) %t A241741 Table[Count[f[n], p_ /; s[2, p] == s[0, p]], {n, 0, z}] (* A241741 *) %t A241741 Table[Count[f[n], p_ /; s[2, p] > s[0, p]], {n, 0, z}] (* A241742 *) %Y A241741 Cf. A241737, A241740, A241742, A241743. %K A241741 nonn,easy %O A241741 0,5 %A A241741 _Clark Kimberling_, Apr 28 2014