A241742 Number of partitions p of n such that (number of numbers in p of form 3k+2) > (number of numbers in p of form 3k).
0, 0, 1, 1, 2, 3, 5, 6, 9, 12, 18, 22, 31, 41, 54, 70, 95, 120, 156, 202, 259, 325, 418, 524, 659, 826, 1032, 1274, 1581, 1949, 2397, 2932, 3592, 4367, 5307, 6430, 7783, 9370, 11288, 13550, 16233, 19399, 23179, 27579, 32812, 38955, 46155, 54572, 64524, 76051
Offset: 0
Examples
a(8) counts these 9 partitions: 8, 521, 5111, 422, 4211, 2222, 22211, 221111, 2111111.
Programs
-
Mathematica
z = 40; f[n_] := f[n] = IntegerPartitions[n]; s[k_, p_] := Count[Mod[DeleteDuplicates[p], 3], k]; Table[Count[f[n], p_ /; s[2, p] < s[0, p]], {n, 0, z}] (* A241740 *) Table[Count[f[n], p_ /; s[2, p] == s[0, p]], {n, 0, z}] (* A241741 *) Table[Count[f[n], p_ /; s[2, p] > s[0, p]], {n, 0, z}] (* A241742 *)
Comments