cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241756 A finite sum of products of binomial coefficients: Sum_(m=0..n) binomial(-1/4, m)^2*binomial(-1/4, n-m)^2 (C. C. Grosjean's problem, denominators).

This page as a plain text file.
%I A241756 #27 Feb 16 2025 23:05:14
%S A241756 1,8,512,4096,2097152,16777216,1073741824,8589934592,35184372088832,
%T A241756 281474976710656,18014398509481984,144115188075855872,
%U A241756 73786976294838206464,590295810358705651712,37778931862957161709568,302231454903657293676544
%N A241756 A finite sum of products of binomial coefficients: Sum_(m=0..n) binomial(-1/4, m)^2*binomial(-1/4, n-m)^2 (C. C. Grosjean's problem, denominators).
%C A241756 This sequence seems to appear also as denominators of A277232, A277234, and A278143. - _Wolfdieter Lang_, Nov 16 2016
%D A241756 E. S. Andersen and M. E. Larsen. A finite sum of products of binomial coefficients, Problem 92-18, by C. C. Grosjean, Solution. SIAM Rev. 35 (1993), 645-646.
%H A241756 P. Flajolet, B. Salvy, and Helmut Prodinger, <a href="http://dx.doi.org/10.1137/1035147">A Finite Sum of Products of Binomial Coefficients</a>, Problem 92-18 by C. C. Grosjean, Solution. SIAM Rev. 35 (1993), 645-646.
%H A241756 C. C. Grosjean, <a href="http://dx.doi.org/10.1137/1034122">Problem no. 92-18</a>, SIAM Rev. 34 (1992), p. 649.
%H A241756 M. E. Larsen, <a href="http://www.math.ku.dk/~mel/larsen.pdf">Summa Summarum</a>, page 114.
%F A241756 GAMMA(3/4)^2 * 4F3(1/4, 1/4, -n, -n; 1, 3/4-n, 3/4-n; 1)/(GAMMA(3/4-n)^2*GAMMA(n+1)^2).
%F A241756 binomial(2n, n)^2*binomial(n-1/2, 2n)*(-1/4)^n.
%F A241756 Conjecture (from sequencedb.net): a(n) = 8^A005187(n). - _R. J. Mathar_, Jun 30 2021
%t A241756 a[n_] := Binomial[2*n, n]^2*Binomial[n-1/2, 2*n]*(-1/4)^n; Table[a[n]//Denominator, {n, 0, 20}]
%Y A241756 Cf. A241755 (numerators), A277232, A277234, A278143.
%K A241756 nonn,frac
%O A241756 0,2
%A A241756 _Jean-François Alcover_, Apr 28 2014