cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241766 Number of partitions of n into parts of the form 3^k - 2^k, cf. A001047.

This page as a plain text file.
%I A241766 #12 Jan 24 2017 20:29:12
%S A241766 1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,5,6,6,6,6,7,8,8,8,8,9,10,10,10,
%T A241766 10,11,12,12,12,13,14,15,15,15,16,17,18,18,18,19,20,21,21,21,22,23,24,
%U A241766 24,25,26,27,28,28,29,30,31,33,33,34,35,36,38,38
%N A241766 Number of partitions of n into parts of the form 3^k - 2^k, cf. A001047.
%H A241766 Reinhard Zumkeller, <a href="/A241766/b241766.txt">Table of n, a(n) for n = 0..1000</a>
%F A241766 G.f.: Product_{k>=1} 1/(1 - x^(3^k-2^k)). - _Ilya Gutkovskiy_, Jan 23 2017
%e A241766 A001047(1..4) = {1, 5, 19, 65}:
%e A241766 a(18) = #{5+5+5+1+1+1, 5+5+8x1, 5+13x1, 18x1} = 4;
%e A241766 a(19) = #{19, 5+5+5+1+1+1+1, 5+5+9x1, 5+14x1, 19x1} = 5;
%e A241766 a(20) = #{19+1, 5+5+5+5, 5+5+5+5x1, 5+5+10x1, 5+15x1, 20x1} = 6;
%e A241766 a(21) = #{19+1+1, 5+5+5+5+1, 5+5+5+6x1, 5+5+11x1, 5+16x1, 21x1} = 6.
%t A241766 nmax = 100; CoefficientList[Series[Product[1/(1 - x^(3^k-2^k)), {k, 1, Floor[Log[nmax]/Log[2]] + 1}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jan 24 2017 *)
%o A241766 (Haskell)
%o A241766 a241766 = p $ tail a001047_list where
%o A241766    p _          0 = 1
%o A241766    p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
%Y A241766 Cf. A001047, A241759.
%K A241766 nonn
%O A241766 0,6
%A A241766 _Reinhard Zumkeller_, Apr 28 2014