A241810 Number of balanced orbitals over n sectors.
1, 1, 0, 0, 2, 6, 0, 6, 8, 36, 0, 88, 58, 376, 0, 1096, 526, 4476, 0, 14200, 5448, 57284, 0, 190206, 61108, 764812, 0, 2615268, 723354, 10499504, 0, 36677626, 8908546, 147110276, 0, 522288944, 113093022
Offset: 0
Programs
-
Mathematica
np[z_]:=Module[{i,j},For[i=Length[z],i>1&&z[[i-1]]>=z[[i]],i--];For[j=Length[z],z[[j]]<=z[[i-1]],j--];Join[Take[z,i-2],{z[[j]]},Reverse[Drop[ReplacePart[z,z[[i-1]],j],i-1]]]];o=Table[1,{16}]; n=0;f=0;Print[1];Print[1];While[n<16,n++;f=1-f;If[OddQ[f*n],Print[0],p=Join[-Take[o,n],{f},Take[o,n-f]];c=0;Do[If[Accumulate[Accumulate[p]][[-1]]==0,c++];p=np[p],{(2*n+1-f)!/(2*n!^2)}];Print[2*c]];n=n-f] (* Hans Havermann, May 10 2014 *)
-
Sage
def A241810(n): if n == 0: return 1 A = 0 T = [0] if is_odd(n) else [] for i in (1..n//2): T.append(-1); T.append(1) for p in Permutations(T): P = 0; S = 0 for k in (0..n-1): P += p[k]; S += P if S == 0: A += 1 return A [A241810(n) for n in (0..32)]
Formula
Extensions
More terms from Hans Havermann, May 10 2014
a(35), a(36) from Hans Havermann, May 23 2014
Comments