cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241810 Number of balanced orbitals over n sectors.

Original entry on oeis.org

1, 1, 0, 0, 2, 6, 0, 6, 8, 36, 0, 88, 58, 376, 0, 1096, 526, 4476, 0, 14200, 5448, 57284, 0, 190206, 61108, 764812, 0, 2615268, 723354, 10499504, 0, 36677626, 8908546, 147110276, 0, 522288944, 113093022
Offset: 0

Views

Author

Peter Luschny, Apr 29 2014

Keywords

Comments

For the combinatorial definitions see A232500. An orbital is balanced if its integral is 0. The integral of an orbital w over n sectors is Sum_{k=1..n} Sum_{i=1..k} w(i) where w(i) are the jumps of the orbital represented by -1, 0, 1.

Crossrefs

Programs

  • Mathematica
    np[z_]:=Module[{i,j},For[i=Length[z],i>1&&z[[i-1]]>=z[[i]],i--];For[j=Length[z],z[[j]]<=z[[i-1]],j--];Join[Take[z,i-2],{z[[j]]},Reverse[Drop[ReplacePart[z,z[[i-1]],j],i-1]]]];o=Table[1,{16}];
    n=0;f=0;Print[1];Print[1];While[n<16,n++;f=1-f;If[OddQ[f*n],Print[0],p=Join[-Take[o,n],{f},Take[o,n-f]];c=0;Do[If[Accumulate[Accumulate[p]][[-1]]==0,c++];p=np[p],{(2*n+1-f)!/(2*n!^2)}];Print[2*c]];n=n-f]
    (* Hans Havermann, May 10 2014 *)
  • Sage
    def A241810(n):
        if n == 0: return 1
        A = 0
        T = [0] if is_odd(n) else []
        for i in (1..n//2):
            T.append(-1); T.append(1)
        for p in Permutations(T):
            P = 0; S = 0
            for k in (0..n-1):
                P += p[k]; S += P
            if S == 0: A += 1
        return A
    [A241810(n) for n in (0..32)]

Formula

a(2*n) = A204459(2, n).
a(2*n+1) = A242087(n).
a(4*n) = A063074(n) = A029895(2*n) = A067059(2*n, 2*n).
a(4*n+2) = 0 for all n (proved by H. Havermann).

Extensions

More terms from Hans Havermann, May 10 2014
a(35), a(36) from Hans Havermann, May 23 2014