This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241837 #4 Jun 19 2014 11:15:34 %S A241837 1,1,1,1,1,1,1,1,7,5,1,1,1,1,1,4,11,5,3,2,7,5,1,1,1,1,5,5,7,13,8,10,4, %T A241837 11,5,3,2,7,5,1,1,1,1,2,19,3,17,13,17,11,4,13,14,19,5,5,7,13,8,10,4, %U A241837 11,5,3,2,7,5,1,1,1,1,7,23,11,7,6,8,19,7,23 %N A241837 Irregular triangular array of denominators of the positive rational numbers ordered as in Comments. %C A241837 Decree that (row 1) = (1,2,3). For n >=2, row n consists of numbers in increasing order generated as follows: x+4 for each x in row n-1 together with 12/x for each nonzero x in row n-1, where duplicates are deleted as they occur. Every rational number occurs exactly once in the array. The number of numbers in row n is A022095(n-1) for n >= 4. %H A241837 Clark Kimberling, <a href="/A241837/b241837.txt">Table of n, a(n) for n = 1..5000</a> %e A241837 First 4 rows of the array of rationals: %e A241837 1/1 .. 2/1 ... 3/1 %e A241837 4/1 .. 5/1 ... 6/2 . 7/1 . 12/1 %e A241837 12/7 . 12/5 .. 8/1 . 9/1 . 10/1 . 11/1 . 16/1 %e A241837 3/4 .. 12/11 . 6/5 . 4/3 . 3/2 .. 40/7 . 32/5 . 13/1 . 14/1 . 15/1 . 20/1 %e A241837 The denominators, by rows: 1,1,1,1,1,2,1,1,7,5,1,1,1,1,1,4,11,5,3,2,7,5,1,1,1,1. %t A241837 z = 10; g[1] = {1, 2, 3}; f1[x_] := x + 4; f2[x_] := 12/x; h[1] = g[1]; %t A241837 b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]]; %t A241837 h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; %t A241837 g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]] %t A241837 u = Table[g[n], {n, 1, z}] %t A241837 v = Flatten[u] %t A241837 Denominator[v] (* A241837 *) %t A241837 Numerator[v] (* A243575 *) %Y A241837 Cf. A243575, A243924, A022095. %K A241837 nonn,easy,tabf,frac %O A241837 1,9 %A A241837 _Clark Kimberling_, Jun 15 2014