A241855 Array t(n,k) of sum of successive even powers of primes, where t(n,k) = sum_(j=0..k-1) prime(n)^(2j), with n>=1 and k>=0, read by ascending antidiagonals.
0, 0, 1, 0, 1, 5, 0, 1, 10, 21, 0, 1, 26, 91, 85, 0, 1, 50, 651, 820, 341, 0, 1, 122, 2451, 16276, 7381, 1365, 0, 1, 170, 14763, 120100, 406901, 66430, 5461, 0, 1, 290, 28731, 1786324, 5884901, 10172526, 597871, 21845, 0, 1, 362, 83811, 4855540, 216145205, 288360150, 254313151, 5380840, 87381
Offset: 1
Examples
Array begins: 0, 1, 5, 21, 85, 341, 1365, ... 0, 1, 10, 91, 820, 7381, 66430, ... 0, 1, 26, 651, 16276, 406901, 10172526, ... 0, 1, 50, 2451, 120100, 5884901, 288360150, ... 0, 1, 122, 14763, 1786324, 216145205, 26153569806, ... etc.
Programs
-
Mathematica
t[n_, k_] := ((Prime[n]^2)^k-1)/(Prime[n]^2-1); Table[t[n-k+1, k], {n, 0, 10}, {k, 0, n}] // Flatten
Formula
t(n,k) = ((prime(n)^2)^k-1)/(prime(n)^2-1).
Comments