cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241855 Array t(n,k) of sum of successive even powers of primes, where t(n,k) = sum_(j=0..k-1) prime(n)^(2j), with n>=1 and k>=0, read by ascending antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 5, 0, 1, 10, 21, 0, 1, 26, 91, 85, 0, 1, 50, 651, 820, 341, 0, 1, 122, 2451, 16276, 7381, 1365, 0, 1, 170, 14763, 120100, 406901, 66430, 5461, 0, 1, 290, 28731, 1786324, 5884901, 10172526, 597871, 21845, 0, 1, 362, 83811, 4855540, 216145205, 288360150, 254313151, 5380840, 87381
Offset: 1

Views

Author

Jean-François Alcover, Apr 30 2014

Keywords

Comments

Conjecture: any term, except 0 and 1, is never a square.
Row n=1 is A002450,
row n=2 is A002452,
row n=3 is A218728,
row n=4 is A218753,
rows n>=5 are not in the OEIS,
column k=2 is A066872,
columns k>=3 are not in the OEIS.

Examples

			Array begins:
0,  1,   5,    21,      85,       341,        1365, ...
0,  1,  10,    91,     820,      7381,       66430, ...
0,  1,  26,   651,   16276,    406901,    10172526, ...
0,  1,  50,  2451,  120100,   5884901,   288360150, ...
0,  1, 122, 14763, 1786324, 216145205, 26153569806, ...
etc.
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := ((Prime[n]^2)^k-1)/(Prime[n]^2-1); Table[t[n-k+1, k], {n, 0, 10}, {k, 0, n}] // Flatten

Formula

t(n,k) = ((prime(n)^2)^k-1)/(prime(n)^2-1).