This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241867 #10 Feb 09 2015 09:29:10 %S A241867 1,0,8,8,44,80,236,513,1238,2744,6160,13384,28846,61228,128513,266668, %T A241867 548185,1116580,2255452,4521198,8998844,17792361,34962224,68305274, %U A241867 132724871,256587512,493665604,945497642,1803122075,3424720416,6479635254,12214748337 %N A241867 Number of compositions of n such that the smallest part has multiplicity seven. %H A241867 Joerg Arndt and Alois P. Heinz, <a href="/A241867/b241867.txt">Table of n, a(n) for n = 7..1000</a> %F A241867 a(n) ~ n^7 * ((1+sqrt(5))/2)^(n-15) / (5^4 * 7!). - _Vaclav Kotesovec_, May 02 2014 %p A241867 b:= proc(n, s) option remember; `if`(n=0, 1, %p A241867 `if`(n<s, 0, expand(add(b(n-j, s)*x, j=s..n)))) %p A241867 end: %p A241867 a:= proc(n) local k; k:= 7; %p A241867 add((p->add(coeff(p, x, i)*binomial(i+k, k), %p A241867 i=0..degree(p)))(b(n-j*k, j+1)), j=1..n/k) %p A241867 end: %p A241867 seq(a(n), n=7..40); %t A241867 b[n_, s_] := b[n, s] = If[n == 0, 1, If[n < s, 0, Expand[Sum[b[n - j, s]*x, {j, s, n}]]]]; a[n_] := With[{k = 7}, Sum[Function[{p}, Sum[Coefficient[p, x, i]*Binomial[i + k, k], {i, 0, Exponent[p, x]}]][b[n - j*k, j + 1]], {j, 1, n/k}]]; Table[a[n], {n, 7, 40}] (* _Jean-François Alcover_, Feb 09 2015, after Maple *) %Y A241867 Column k=7 of A238342. %K A241867 nonn %O A241867 7,3 %A A241867 _Joerg Arndt_ and _Alois P. Heinz_, Apr 30 2014