This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241873 #22 Jul 14 2015 11:11:05 %S A241873 1,48,822,9305,83590,647891,4537169,29532566,182034751,1076357002, %T A241873 6162251432,34394051095,188121970788,1012370499109,5376927101387, %U A241873 28254655805724,147182871736245,761235618312420,3914066453608570,20027841005048805,102071452026321906 %N A241873 Number of ascent sequences of length n with exactly three descents. %H A241873 Joerg Arndt and Alois P. Heinz, <a href="/A241873/b241873.txt">Table of n, a(n) for n = 6..1000</a> %H A241873 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (32,-461,3952,-22443,88896,-251663,512656,-745096,752672,-500976,196992,-34560). %F A241873 G.f.: -(912*x^6-2440*x^5+2481*x^4-1177*x^3+253*x^2-16*x-1)*x^6 / ((5*x-1) *(4*x-1)^2 *(x-1)^2 *(3*x-1)^3 *(2*x-1)^4). %F A241873 a(n) = 3*5^(n-1)/8 - 4^(n-1)*n/3 + 3^(n-2)*(6*n^2-2*n-7)/16 - 2^(n-5)*(n-2)*(n-1)*(n+3)/3 - n/24 + 1/16. - _Vaclav Kotesovec_, May 03 2014 %F A241873 Recurrence: a(n) = -34560*a(n-12) + 196992*a(n-11) - 500976*a(n-10) + 752672*a(n-9) - 745096*a(n-8) + 512656*a(n-7) - 251663*a(n-6) + 88896*a(n-5) - 22443*a(n-4) + 3952*a(n-3) - 461*a(n-2) + 32*a(n-1). - _Fung Lam_, May 05 2014 %p A241873 gf:= -(912*x^6-2440*x^5+2481*x^4-1177*x^3+253*x^2-16*x-1)*x^6/ %p A241873 ((5*x-1)*(4*x-1)^2*(x-1)^2*(3*x-1)^3*(2*x-1)^4): %p A241873 a:= n-> coeff(series(gf, x, n+1), x, n): %p A241873 seq(a(n), n=6..30); %t A241873 CoefficientList[Series[-(912 x^6 - 2440 x^5 + 2481 x^4 - 1177 x^3 + 253 x^2 - 16 x - 1)/((5 x - 1) (4 x - 1)^2 (x - 1)^2 (3 x - 1)^3 (2 x - 1)^4), {x, 0, 40}], x] (* _Vincenzo Librandi_, May 06 2014 *) %t A241873 LinearRecurrence[{32,-461,3952,-22443,88896,-251663,512656,-745096,752672,-500976,196992,-34560},{1,48,822,9305,83590,647891,4537169,29532566,182034751,1076357002,6162251432,34394051095},21] (* _Ray Chandler_, Jul 14 2015 *) %Y A241873 Column k=3 of A238858. %K A241873 nonn,easy %O A241873 6,2 %A A241873 _Joerg Arndt_ and _Alois P. Heinz_, Apr 30 2014