A241896 Increasingly ordered odd primes p(m) with p(m) = (sum of the digits of all primes p(i) in base 3 for i=1, 2, ..., m-1) + (sum of digits of m-1 in base 3).
3, 5, 7, 11, 17, 29, 37, 695641, 695687, 695749, 695881, 699943, 700199, 715457, 883433, 883451, 883471, 883621, 992111, 992357, 992591, 993683, 1308563, 1309999, 1310041, 1310359, 1310993, 1313161, 1314191, 1314377, 1317271, 1324567, 1326097, 1326109, 1326649, 1760113, 1760287, 1766509, 1766537, 3173761, 3204779, 3204827, 4539191
Offset: 1
Examples
prime(2) = 3 = A239619(1) + A053735(1) = 2 + 1. This is a(1) because it is the smallest odd prime from the defined set S. prime(7) = 17 = sum_{i=1..6} A239619(i) + A053735(6) = (2 + 1 + 3 + 3 + 3 + 3) + 2 = 17. This is a(5) because it is the fifth smallest odd prime from the set S. prime(6) = 13 is not a member of this sequence because (2 + 1 + 3 + 3 + 3) + 3 = 15 which is not equal 13, hence prime(6) is not a member of the set S.
Crossrefs
Formula
Extensions
Edited. - Wolfdieter Lang, May 19 2014