cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241903 Number of binary strings of length n avoiding the pattern x x x^R (where x^R means reverse of x).

This page as a plain text file.
%I A241903 #21 May 16 2016 08:20:59
%S A241903 1,2,4,6,10,16,24,34,48,62,80,100,124,148,178,210,244,282,324,372,426,
%T A241903 488,556,630,712,804,908,1024,1152,1296,1454,1626,1814,2018,2244,2490,
%U A241903 2756,3044,3354,3690,4050,4438,4856,5300,5772,6272,6800,7370,7966,8598,9266,9964,10708,11484,12300,13166
%N A241903 Number of binary strings of length n avoiding the pattern x x x^R (where x^R means reverse of x).
%H A241903 Giovanni Resta, <a href="/A241903/b241903.txt">Table of n, a(n) for n = 0..300</a>
%H A241903 James Currie, Narad Rampersad, <a href="http://arxiv.org/abs/1502.07014">Growth rate of binary words avoiding xxx^R</a>, arXiv preprint arXiv:1502.07014, 2015
%H A241903 J. D. Currie and N. Rampersad. Growth rate of binary words avoiding xxxR. Theoret. Comput. Sci. 609 (2016), 456-468.
%H A241903 Chen Fei Du, Hamoon Mousavi, Luke Schaeffer, and Jeffrey Shallit, <a href="http://arxiv.org/abs/1406.0670">Decision Algorithms for Fibonacci-Automatic Words, with Applications to Pattern Avoidance</a>, preprint, June 3 2014
%e A241903 For n=4 the strings {0000,0001,0111,1000,1110,1111} have instances of x x x^R, so a(4) = 16-6 = 10.
%K A241903 nonn
%O A241903 0,2
%A A241903 _Jeffrey Shallit_, May 01 2014