cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241916 a(2^k) = 2^k, and for other numbers, if n = 2^e1 * 3^e2 * 5^e3 * ... p_k^e_k, then a(n) = 2^(e_k - 1) * 3^(e_{k-1}) * ... * p_{k-1}^e2 * p_k^(e1+1). Here p_k is the greatest prime factor of n (A006530), and e_k is its exponent (A071178), and the exponents e1, ..., e_{k-1} >= 0.

Table of values

n a(n)
1 1
2 2
3 3
4 4
5 5
6 9
7 7
8 8
9 6
10 25
11 11
12 27
13 13
14 49
15 15
16 16
17 17
18 18
19 19
20 125
21 35
22 121
23 23
24 81
25 10
26 169
27 12
28 343
29 29
30 75
31 31
32 32
33 77
34 289
35 21
36 54
37 37
38 361
39 143
40 625
41 41
42 245
43 43
44 1331
45 45
46 529
47 47
48 243
49 14
50 50
51 221
52 2197
53 53
54 36
55 55
56 2401
57 323
58 841
59 59
60 375
61 61
62 961
63 175
64 64

List of values

[1, 2, 3, 4, 5, 9, 7, 8, 6, 25, 11, 27, 13, 49, 15, 16, 17, 18, 19, 125, 35, 121, 23, 81, 10, 169, 12, 343, 29, 75, 31, 32, 77, 289, 21, 54, 37, 361, 143, 625, 41, 245, 43, 1331, 45, 529, 47, 243, 14, 50, 221, 2197, 53, 36, 55, 2401, 323, 841, 59, 375, 61, 961, 175, 64]