cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241918 Table of partitions where the ordering is based on the modified partial sums of the exponents of primes in the prime factorization of n.

This page as a plain text file.
%I A241918 #35 Jul 09 2025 04:39:07
%S A241918 0,1,1,1,2,1,1,1,2,2,1,1,1,1,3,1,2,2,2,2,1,1,1,1,1,3,3,1,1,1,1,1,1,2,
%T A241918 2,2,2,1,2,2,4,1,1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,3,3,3,1,2,2,2,2,2,2,
%U A241918 2,2,1,1,1,1,1,1,1,1,1,4,4,1,1,2,2,2,2,2,2,2,1,3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,2,3,3,1,1,1,1,1,1,1,1,1,1,1,5
%N A241918 Table of partitions where the ordering is based on the modified partial sums of the exponents of primes in the prime factorization of n.
%C A241918 a(1) = 0 by convention (stands for an empty partition).
%C A241918 For n >= 2, A203623(n-1)+2 gives the index to the beginning of row n and for n>=1, A203623(n)+1 is the index to the end of row n.
%H A241918 Antti Karttunen, <a href="/A241918/b241918.txt">Table of n, a(n) for n = 1..10081; rows 1..521 flattened.</a>
%H A241918 <a href="http://oeis.org/wiki/User:Antti_Karttunen/Mail_by_Marc_LeBrun_Re_Partition_ordering_on_SeqFan_list_posted_12_Jan_2006">Marc LeBrun's original "crazy order" mapping for partitions</a> (Copy of Marc's Jan 11 2006 message in OEIS Wiki)
%F A241918 If A241914(n)=0 and A241914(n+1)=0, a(n) = A067255(n); otherwise, if A241914(n)=0 and A241914(n+1)>0, a(n) = A067255(n)+1; otherwise, if A241914(n)>0 and A241914(n+1)=0, a(n) = a(n-1) + A067255(n) - 1, otherwise, when A241914(n)>0 and A241914(n+1)>0, a(n) = a(n-1) + A067255(n).
%e A241918 Table begins:
%e A241918 Row     Partition
%e A241918 [ 1]    0;         (stands for empty partition)
%e A241918 [ 2]    1;         (as 2 = 2^1)
%e A241918 [ 3]    1,1;       (as 3 = 2^0 * 3^1)
%e A241918 [ 4]    2;         (as 4 = 2^2)
%e A241918 [ 5]    1,1,1;     (as 5 = 2^0 * 3^0 * 5^1)
%e A241918 [ 6]    2,2;       (as 6 = 2^1 * 3^1)
%e A241918 [ 7]    1,1,1,1;   (as 7 = 2^0 * 3^0 * 5^0 * 7^1)
%e A241918 [ 8]    3;         (as 8 = 2^3)
%e A241918 [ 9]    1,2;       (as 9 = 2^0 * 3^2)
%e A241918 [10]    2,2,2;     (as 10 = 2^1 * 3^0 * 5^1)
%e A241918 [11]    1,1,1,1,1;
%e A241918 [12]    3,3;
%e A241918 [13]    1,1,1,1,1,1;
%e A241918 [14]    2,2,2,2;
%e A241918 [15]    1,2,2;     (as 15 = 2^0 * 3^1 * 5^1)
%e A241918 [16]    4;
%e A241918 [17]    1,1,1,1,1,1,1;
%e A241918 [18]    2,3;       (as 18 = 2^1 * 3^2)
%e A241918 etc.
%e A241918 If n is 2^k (k>=1), then the partition is a singleton {k}, otherwise, add one to the exponent of 2 (= A007814(n)), and subtract one from the exponent of the greatest prime dividing n (= A071178(n)), leaving the intermediate exponents as they are, and then take partial sums of all, thus resulting for e.g. 15 = 2^0 * 3^1 * 5^1 the modified sequence of exponents {0+1, 1, 1-1} -> {1,1,0}, whose partial sums {1,1+1,1+1+0} -> {1,2,2} give the corresponding partition at row 15.
%t A241918 Table[If[n == 1, {0}, Function[s, Function[t, Accumulate[If[Length@ t < 2, {0}, Join[{1}, ConstantArray[0, Length@ t - 2], {-1}]] + ReplacePart[t, Map[#1 -> #2 & @@ # &, s]]]]@ ConstantArray[0, Transpose[s][[1, -1]]]][FactorInteger[n] /. {p_, e_} /; p > 0 :> {PrimePi@ p, e}]], {n, 31}] // Flatten (* _Michael De Vlieger_, May 12 2017 *)
%o A241918 (Scheme, with _Antti Karttunen_'s IntSeq-library)
%o A241918 (definec (A241918 n) (cond ((zero? (A241914 n)) (if (zero? (A241914 (+ n 1))) (A067255 n) (+ 1 (A067255 n)))) ((zero? (A241914 (+ 1 n))) (+ (A241918 (- n 1)) (- (A067255 n) 1))) (else (+ (A241918 (- n 1)) (A067255 n)))))
%Y A241918 For n>=2, the length of row n is given by A061395(n).
%Y A241918 Cf. also A067255, A203623, A241914.
%Y A241918 Other tables of partitions: A112798 (also based on prime factorization), A227739, A242628 (encoded in the binary representation of n), and A036036-A036037, A080576-A080577, A193073 for various lexicographical orderings.
%Y A241918 Permutation A241909 maps between order of partitions employed here, and the order employed in A112798.
%Y A241918 Permutation A122111 is induced when partitions in this list are conjugated.
%Y A241918 A241912 gives the row numbers for which the corresponding rows in A112798 and here are the conjugate partitions of each other.
%K A241918 nonn,tabf
%O A241918 1,5
%A A241918 _Antti Karttunen_, May 03 2014, based on _Marc LeBrun_'s Jan 11 2006 message on SeqFan mailing list