cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241928 a(n) = smallest k such that lambda(n+k) = lambda(k).

This page as a plain text file.
%I A241928 #5 May 09 2014 22:51:23
%S A241928 1,4,3,4,3,6,7,4,3,5,5,9,13,7,5,8,17,6,9,4,3,11,23,16,5,13,9,14,7,10,
%T A241928 31,13,9,17,5,36,37,10,13,20,41,14,5,16,15,23,9,36,7,10,17,13,52,9,5,
%U A241928 7,13,14,45,20,61,31,9,16,7,18,45,17,23,10,71,45,39
%N A241928 a(n) = smallest k such that lambda(n+k) = lambda(k).
%C A241928 Lambda(n) is the Carmichael lambda function(A002322).
%C A241928 It is highly probable that a solution exists for each n>0.
%C A241928 The corresponding values of lambda(k) are 1, 2, 2, 2, 2, 2, 6, 2, 2, 4, 4, 6, 12, 6, 4, 2, 16, 2, 6, 2, 2, 10, 22, 4, 4, 12, 6, 6, 6, 4, 30, ...
%H A241928 Michel Lagneau, <a href="/A241928/b241928.txt">Table of n, a(n) for n = 1..10000</a>
%e A241928 a(29) = 7 because lambda(29+7) = lambda(7) = 6.
%p A241928 with(numtheory):for n from 1 to 70 do:ii:=0:for k from 1 to 10^8 while(ii=0) do:if lambda(k) = lambda(k+n) then ii:=1:printf(`%d, `,k):else fi:od:od:
%t A241928 klambda[n_]:=Module[{k=1}, While[CarmichaelLambda[n+k]!= CarmichaelLambda [k], k++]; k]; Array[klambda, 70]
%Y A241928 Cf. A002322, A007015, A173695.
%K A241928 nonn
%O A241928 1,2
%A A241928 _Michel Lagneau_, May 02 2014