cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A241930 Number of length n+4 0..2 arrays with no consecutive five elements summing to more than 2*2.

Original entry on oeis.org

96, 218, 509, 1187, 2727, 6105, 13783, 31371, 71597, 163265, 371233, 843454, 1917748, 4363488, 9929816, 22591685, 51388147, 116887518, 265895212, 604890821, 1376076749, 3130379281, 7121057576, 16199193540, 36850716662, 83830116628
Offset: 1

Views

Author

R. H. Hardin, May 02 2014

Keywords

Comments

Column 2 of A241936

Examples

			Some solutions for n=4
..0....2....1....2....0....1....2....0....0....1....2....0....1....0....0....0
..0....0....0....1....1....2....0....1....1....0....0....2....1....0....2....2
..1....0....0....0....2....0....0....1....1....0....0....0....1....0....0....0
..0....1....1....1....1....0....0....1....1....0....2....1....0....0....1....0
..0....1....0....0....0....0....0....0....1....2....0....1....0....1....0....0
..2....2....1....0....0....0....0....1....0....0....1....0....1....0....1....2
..1....0....1....1....0....0....2....1....1....1....0....0....0....1....0....0
..1....0....1....0....2....2....1....0....0....1....0....0....0....2....2....0
		

Formula

Empirical: a(n) = a(n-1) +a(n-2) +2*a(n-3) +a(n-4) +12*a(n-5) +3*a(n-6) -5*a(n-7) -17*a(n-8) -11*a(n-9) -42*a(n-10) -25*a(n-11) +5*a(n-12) +38*a(n-13) +36*a(n-14) +80*a(n-15) +47*a(n-16) -a(n-17) -59*a(n-18) -61*a(n-19) -101*a(n-20) -21*a(n-21) -3*a(n-22) +71*a(n-23) +70*a(n-24) +106*a(n-25) -11*a(n-26) +8*a(n-27) -46*a(n-28) -55*a(n-29) -78*a(n-30) +17*a(n-31) -6*a(n-32) +13*a(n-33) +28*a(n-34) +36*a(n-35) -5*a(n-36) +a(n-37) -2*a(n-38) -8*a(n-39) -9*a(n-40) +a(n-44) +a(n-45)

A241931 Number of length n+4 0..3 arrays with no consecutive five elements summing to more than 2*3.

Original entry on oeis.org

357, 1043, 3150, 9500, 28153, 80983, 235307, 690027, 2029867, 5965434, 17473375, 51138385, 149786712, 439085571, 1287374910, 3773496722, 11058028881, 32404252199, 94965809552, 278330243566, 815741720342, 2390738000653
Offset: 1

Views

Author

R. H. Hardin, May 02 2014

Keywords

Comments

Column 3 of A241936

Examples

			Some solutions for n=4
..0....0....0....2....0....2....0....0....2....3....2....0....2....0....2....0
..3....1....1....0....0....0....1....0....1....1....3....0....0....3....0....3
..2....1....0....2....0....1....0....0....0....0....0....0....1....0....1....1
..1....1....3....0....1....1....2....1....1....2....0....2....0....1....1....0
..0....2....0....0....2....0....1....0....1....0....0....0....1....1....0....1
..0....0....2....0....1....0....0....1....1....1....0....2....0....1....2....1
..0....2....0....1....1....2....2....2....0....2....2....2....1....0....2....0
..1....1....0....1....1....1....1....2....0....1....1....0....0....1....1....3
		

A241932 Number of length n+4 0..4 arrays with no consecutive five elements summing to more than 2*4.

Original entry on oeis.org

1007, 3599, 13339, 49355, 179145, 629639, 2237881, 8033092, 28934110, 104102590, 373201914, 1336734507, 4792189608, 17194917412, 61709782678, 221400433079, 794125191772, 2848328136328, 10217284352752, 36653163240456
Offset: 1

Views

Author

R. H. Hardin, May 02 2014

Keywords

Comments

Column 4 of A241936

Examples

			Some solutions for n=4
..0....2....2....1....0....0....2....2....2....4....0....1....4....2....1....2
..0....1....0....0....3....2....0....2....1....2....0....4....0....1....0....4
..1....2....0....4....0....4....0....0....1....0....1....0....2....0....3....0
..2....0....0....0....0....0....0....0....3....0....3....0....2....4....3....0
..0....0....2....0....1....1....0....0....0....0....3....0....0....0....1....1
..4....4....1....4....2....1....4....1....0....3....0....2....2....2....0....0
..0....2....1....0....4....2....1....4....4....1....0....2....2....1....0....3
..0....2....1....2....0....1....2....0....1....4....0....0....0....1....2....2
		

A241933 Number of length n+4 0..5 arrays with no consecutive five elements summing to more than 2*5.

Original entry on oeis.org

2373, 10031, 44063, 193179, 829867, 3446359, 14484953, 61516665, 262195061, 1116201939, 4733690714, 20056923188, 85062873051, 361088568262, 1533135127000, 6507411472364, 27613125200003, 117169184614143
Offset: 1

Views

Author

R. H. Hardin, May 02 2014

Keywords

Comments

Column 5 of A241936

Examples

			Some solutions for n=4
..0....4....0....0....0....0....0....3....0....4....1....0....0....3....4....3
..2....3....2....3....2....2....2....1....1....3....3....0....1....0....0....3
..2....0....0....2....0....3....2....3....1....1....3....0....0....1....0....1
..1....3....1....0....1....1....1....0....2....1....0....0....2....3....1....3
..2....0....2....0....4....3....3....0....0....0....2....5....3....1....1....0
..3....1....0....0....3....0....0....1....1....4....1....1....1....3....0....0
..2....3....2....0....0....3....1....2....0....0....2....3....0....0....3....1
..1....0....4....5....2....0....0....3....1....5....5....1....1....2....4....3
		

A241934 Number of length n+4 0..6 arrays with no consecutive five elements summing to more than 2*6.

Original entry on oeis.org

4928, 24052, 122162, 619132, 3072022, 14718452, 71410234, 350218814, 1723963699, 8475679841, 41504098816, 203051381120, 994375623587, 4874262287526, 23898143276223, 117131403384010, 573927244718333, 2812100699364644
Offset: 1

Views

Author

R. H. Hardin, May 02 2014

Keywords

Comments

Column 6 of A241936

Examples

			Some solutions for n=3
..0....2....0....0....0....4....4....2....1....3....2....3....1....2....2....1
..0....1....6....3....1....2....1....0....0....2....1....2....3....1....3....3
..5....0....1....3....2....1....0....4....1....1....5....2....5....0....2....2
..1....0....0....0....1....1....5....3....4....2....0....1....0....5....3....1
..1....4....1....3....1....0....2....1....2....0....1....4....0....3....1....3
..4....0....3....3....0....2....4....0....1....0....0....2....0....2....0....3
..0....4....4....0....4....5....1....0....0....2....3....2....6....1....1....2
		

A241935 Number of length n+4 0..7 arrays with no consecutive five elements summing to more than 2*7.

Original entry on oeis.org

9318, 51570, 297324, 1710198, 9624440, 52254450, 287426800, 1598585338, 8924720978, 49760963006, 276311885295, 1532857881763, 8512323755390, 47317405226526, 263083473757841, 1462225786507689, 8124665445603571
Offset: 1

Views

Author

R. H. Hardin, May 02 2014

Keywords

Comments

Column 7 of A241936.

Examples

			Some solutions for n=2
..1....1....0....6....1....0....2....1....1....5....4....4....2....4....6....7
..0....3....2....4....1....2....0....1....0....2....1....3....1....3....1....1
..0....4....4....1....1....0....0....3....3....3....3....1....0....0....2....0
..0....1....3....0....3....7....4....2....4....2....0....4....1....1....2....2
..2....0....5....1....2....0....4....1....1....1....2....0....6....4....1....1
..6....2....0....7....3....1....5....0....0....5....5....4....0....0....2....2
		

Crossrefs

Cf. A241936.

A241937 Number of length 1+4 0..n arrays with no consecutive five elements summing to more than 2*n.

Original entry on oeis.org

16, 96, 357, 1007, 2373, 4928, 9318, 16389, 27214, 43120, 65715, 96915, 138971, 194496, 266492, 358377, 474012, 617728, 794353, 1009239, 1268289, 1577984, 1945410, 2378285, 2884986, 3474576, 4156831, 4942267, 5842167, 6868608, 8034488
Offset: 1

Views

Author

R. H. Hardin, May 02 2014

Keywords

Examples

			Some solutions for n=4:
..2....2....2....0....2....4....0....0....0....3....0....1....0....0....1....0
..0....0....2....0....1....0....4....0....4....2....1....1....2....0....1....2
..2....0....1....3....2....0....1....2....2....3....4....0....1....0....3....2
..0....1....1....4....2....3....0....2....2....0....0....0....1....4....1....3
..0....2....1....0....1....1....1....4....0....0....0....2....0....2....1....1
		

Crossrefs

Row 1 of A241936.

Formula

Empirical: a(n) = (9/40)*n^5 + (19/12)*n^4 + (101/24)*n^3 + (65/12)*n^2 + (107/30)*n + 1.
Conjectures from Colin Barker, Oct 30 2018: (Start)
G.f.: x*(16 + 21*x^2 - 15*x^3 + 6*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A241938 Number of length 2+4 0..n arrays with no consecutive five elements summing to more than 2*n.

Original entry on oeis.org

26, 218, 1043, 3599, 10031, 24052, 51570, 101421, 186208, 323246, 535613, 853307, 1314509, 1966952, 2869396, 4093209, 5724054, 7863682, 10631831, 14168231, 18634715, 24217436, 31129190, 39611845, 49938876, 62418006, 77393953, 95251283
Offset: 1

Views

Author

R. H. Hardin, May 02 2014

Keywords

Examples

			Some solutions for n=4:
..3....1....1....0....1....2....2....1....0....1....2....0....2....1....3....2
..1....3....1....1....2....0....1....0....3....0....1....0....1....3....0....2
..2....1....1....1....2....1....0....2....1....0....2....2....2....2....1....1
..0....2....0....3....1....4....3....1....1....4....0....0....3....1....1....0
..1....1....0....3....0....0....1....0....1....0....3....1....0....1....0....0
..4....1....1....0....0....1....0....2....2....1....0....4....0....1....0....1
		

Crossrefs

Row 2 of A241936.

Formula

Empirical: a(n) = (53/360)*n^6 + (5/4)*n^5 + (307/72)*n^4 + (91/12)*n^3 + (683/90)*n^2 + (25/6)*n + 1.
Conjectures from Colin Barker, Oct 30 2018: (Start)
G.f.: x*(26 + 36*x + 63*x^2 - 34*x^3 + 21*x^4 - 7*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A241939 Number of length 3+4 0..n arrays with no consecutive five elements summing to more than 2*n.

Original entry on oeis.org

43, 509, 3150, 13339, 44063, 122162, 297324, 654345, 1329163, 2529175, 4558346, 7847619, 12991135, 20788772, 32295512, 48878145, 72279819, 104692945, 148840966, 208069499, 286447359, 388877974, 521221700, 690429545, 904688811
Offset: 1

Views

Author

R. H. Hardin, May 02 2014

Keywords

Examples

			Some solutions for n=4:
..1....0....1....4....0....1....2....2....0....0....2....1....1....1....4....1
..3....2....4....0....0....3....0....0....2....0....1....1....0....1....1....1
..2....0....1....0....0....0....1....3....1....0....2....0....0....1....0....0
..0....2....0....0....1....0....2....2....4....4....0....0....2....0....0....4
..1....3....2....2....1....1....0....1....0....0....2....0....2....2....0....0
..0....0....0....3....4....3....1....1....1....0....2....1....2....1....1....0
..0....1....4....3....1....0....4....1....2....1....1....4....0....1....0....3
		

Crossrefs

Row 3 of A241936.

Formula

Empirical: a(n) = (509/5040)*n^7 + 1*n^6 + (743/180)*n^5 + (223/24)*n^4 + (8993/720)*n^3 + (245/24)*n^2 + (502/105)*n + 1.
Conjectures from Colin Barker, Oct 30 2018: (Start)
G.f.: x*(43 + 165*x + 282*x^2 - 17*x^3 + 57*x^4 - 28*x^5 + 8*x^6 - x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)

A241940 Number of length 4+4 0..n arrays with no consecutive five elements summing to more than 2*n.

Original entry on oeis.org

71, 1187, 9500, 49355, 193179, 619132, 1710198, 4211175, 9462805, 19735067, 38684438, 71962709, 128007725, 219049200, 362365540, 581830389, 909790395, 1389318475, 2076889640, 3045529223, 4388486135, 6223486556, 8697626250
Offset: 1

Views

Author

R. H. Hardin, May 02 2014

Keywords

Examples

			Some solutions for n=4:
..3....0....1....0....1....1....0....0....0....1....0....3....1....0....1....3
..2....1....4....0....0....0....3....2....2....0....0....1....3....2....3....1
..1....3....0....1....0....1....0....0....0....1....4....0....1....2....2....0
..0....1....0....1....4....2....1....0....2....1....0....0....1....2....0....4
..0....1....3....0....1....0....2....0....0....0....0....1....0....1....0....0
..3....0....0....0....1....2....1....1....1....2....2....4....2....0....0....3
..2....1....0....1....1....0....0....4....1....0....2....2....0....0....1....1
..1....4....3....2....0....1....0....3....4....3....3....1....1....3....1....0
		

Crossrefs

Row 4 of A241936.

Formula

Empirical: a(n) = (1391/20160)*n^8 + (197/252)*n^7 + (1819/480)*n^6 + (3719/360)*n^5 + (5593/320)*n^4 + (1369/72)*n^3 + (66343/5040)*n^2 + (2257/420)*n + 1.
Conjectures from Colin Barker, Oct 31 2018: (Start)
G.f.: x*(71 + 548*x + 1373*x^2 + 623*x^3 + 222*x^4 - 83*x^5 + 36*x^6 - 9*x^7 + x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)
Showing 1-10 of 13 results. Next