This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A241946 #12 May 17 2014 04:03:51 %S A241946 1001,1111,1221,1331,1441,1551,1661,1771,1881,1991,2002,2112,2222, %T A241946 2332,2442,2552,2662,2772,2882,2992,3003,3113,3223,3333,3443,3553, %U A241946 3663,3773,3883,3993,4004,4114,4224,4334,4444,4554,4664,4774,4884,4994,5005,5115,5225 %N A241946 Numbers n equal to the sum of all the four-digit numbers formed without repetition from the digits of n. %C A241946 Let d(1)d(2)... d(q) denote the decimal expansion of a number n. Any decimal expansion of four-digits d(i)d(j)d(k)d(l) formed from the digits of n is such that i<j<k<l or i>j>k>l. %C A241946 This sequence is interesting because it contains more than just the only trivial palindromic values 1001, 1111, 1221,... The sequence is given by the union of subsets {palindromes with four digits from A056524} union {37323, 48015, 72468, 152658} and contains 94 elements. The last four elements are non-palindromic numbers. %C A241946 But the generalization of this problem seems difficult, for example the case with the sum of all the three-digit numbers formed without repetition from the digits of n gives only 90 palindromic numbers 101, 111, 121,..., 989,999. %H A241946 Michel Lagneau, <a href="/A241946/b241946.txt">Table of n, a(n) for n = 1..93</a> %e A241946 37323 is in the sequence because 37323 = 2373 + 3233 + 3237 + 3273 + 3323 + 3373 + 3723 + 3732 + 3733 + 7323. %p A241946 with(numtheory): %p A241946 for n from 1000 to 10000 do: %p A241946 lst:={}:k:=0:x:=convert(n,base,10):n1:=nops(x): %p A241946 for i from 1 to n1 do: %p A241946 for j from i+1 to n1 do: %p A241946 for m from j+1 to n1 do: %p A241946 for q from m+1 to n1 do: %p A241946 lst:=lst union {x[i]+10*x[j]+100*x[m]+1000*x[q]}: %p A241946 od: %p A241946 od: %p A241946 od: %p A241946 od: %p A241946 for a from n1 by -1 to 1 do: %p A241946 for b from a-1 by -1 to 1 do: %p A241946 for c from b-1 by -1 to 1 do: %p A241946 for d from c-1 by -1 to 1 do: %p A241946 lst:=lst union %p A241946 {x[a]+10*x[b]+100*x[c]+1000*x[d]}: %p A241946 od: %p A241946 od: %p A241946 od: %p A241946 od: %p A241946 n2:=nops(lst):s:=sum('lst[i]', 'i'=1..n2): %p A241946 if s=n %p A241946 then %p A241946 printf(`%d, `,n): %p A241946 else %p A241946 fi: %p A241946 od: %Y A241946 Cf. A241899. %K A241946 nonn,base,fini,full %O A241946 1,1 %A A241946 _Michel Lagneau_, May 03 2014