A241960 Number of length n+3 0..4 arrays with no consecutive four elements summing to more than 2*4.
355, 1421, 5778, 23320, 92037, 365810, 1460409, 5830838, 23237977, 92595629, 369142639, 1471836335, 5867774115, 23391443650, 93250841634, 371756884287, 1482053418845, 5908333573340, 23554074220207, 93900552089203
Offset: 1
Keywords
Examples
Some solutions for n=4 ..3....1....1....3....3....4....0....2....1....1....0....1....2....1....2....2 ..1....1....0....3....2....1....0....4....1....3....2....4....1....1....3....0 ..0....1....0....0....2....1....1....2....1....3....0....2....2....0....0....2 ..3....0....2....1....1....1....4....0....2....1....3....0....0....2....0....1 ..0....4....0....3....1....0....2....2....2....1....1....2....0....0....0....4 ..3....0....2....0....2....0....0....3....1....3....3....0....4....3....3....0 ..0....2....4....4....0....1....0....3....3....1....0....4....0....1....4....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- R. H. Hardin, Empirical recurrence of order 85
Formula
Empirical recurrence of order 85 (see link above)
Comments