cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241967 Number of length 4+3 0..n arrays with no consecutive four elements summing to more than 2*n.

This page as a plain text file.
%I A241967 #7 Oct 31 2018 06:33:33
%S A241967 57,775,5211,23320,80132,228826,569874,1277427,2634115,5075433,
%T A241967 9244885,16061058,26797798,43178660,67486804,102691509,152592477,
%U A241967 221983099,316833855,444497020,613933848,835965406,1123548230,1492075975
%N A241967 Number of length 4+3 0..n arrays with no consecutive four elements summing to more than 2*n.
%H A241967 R. H. Hardin, <a href="/A241967/b241967.txt">Table of n, a(n) for n = 1..210</a>
%F A241967 Empirical: a(n) = (293/1260)*n^7 + (691/360)*n^6 + (2443/360)*n^5 + (121/9)*n^4 + (5857/360)*n^3 + (4369/360)*n^2 + (2189/420)*n + 1.
%F A241967 Conjectures from _Colin Barker_, Oct 31 2018: (Start)
%F A241967 G.f.: x*(57 + 319*x + 607*x^2 + 140*x^3 + 70*x^4 - 28*x^5 + 8*x^6 - x^7) / (1 - x)^8.
%F A241967 a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
%F A241967 (End)
%e A241967 Some solutions for n=4:
%e A241967 ..1....1....2....0....3....2....4....4....4....4....0....0....1....0....0....1
%e A241967 ..0....4....1....2....1....0....0....1....1....0....1....0....1....1....3....1
%e A241967 ..0....0....4....0....0....4....3....3....1....3....0....1....3....3....3....3
%e A241967 ..2....2....0....3....4....2....1....0....2....1....4....0....2....2....0....3
%e A241967 ..1....0....1....1....0....1....2....1....4....3....2....4....1....0....0....1
%e A241967 ..0....4....2....3....2....1....0....3....0....1....0....1....0....2....3....0
%e A241967 ..0....2....2....1....1....2....0....0....2....0....2....3....4....2....2....3
%Y A241967 Row 4 of A241964.
%K A241967 nonn
%O A241967 1,1
%A A241967 _R. H. Hardin_, May 03 2014