A241969 Number of length 6+3 0..n arrays with no consecutive four elements summing to more than 2*n.
166, 4663, 53553, 365810, 1782453, 6853011, 22111157, 62336336, 157897575, 366623400, 792037896, 1610247431, 3108255424, 5737023770, 10183189142, 17463980371, 29050569460, 47025823517, 74283207995, 114774423104
Offset: 1
Keywords
Examples
Some solutions for n=3 ..2....1....2....2....0....0....0....1....3....0....0....2....0....3....0....2 ..0....1....1....1....3....1....2....1....0....1....3....1....2....2....1....2 ..0....3....2....0....1....0....2....2....0....3....0....1....0....0....0....0 ..2....1....0....2....1....3....1....2....1....0....1....2....1....1....0....1 ..3....1....1....0....1....0....0....1....1....2....1....0....0....0....1....0 ..0....0....2....1....1....1....2....0....0....0....3....2....0....2....0....3 ..1....2....1....0....3....1....1....0....0....3....1....1....2....0....0....1 ..2....0....2....2....0....1....0....2....2....0....0....0....0....2....2....1 ..1....2....0....2....0....2....1....3....1....3....2....2....1....0....0....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (24187/181440)*n^9 + (57493/40320)*n^8 + (12829/1890)*n^7 + (54583/2880)*n^6 + (296887/8640)*n^5 + (242891/5760)*n^4 + (3196213/90720)*n^3 + (196087/10080)*n^2 + (16343/2520)*n + 1
Comments