A241990 Decimal expansion of 'delta', a constant arising in the asymptotics of the regularized product of the Fibonacci numbers.
8, 9, 9, 2, 1, 2, 6, 8, 0, 7, 8, 5, 5, 0, 0, 8, 8, 6, 2, 5, 7, 6, 9, 8, 8, 3, 8, 7, 7, 5, 2, 8, 8, 1, 8, 2, 4, 3, 5, 0, 4, 5, 4, 1, 1, 7, 0, 6, 8, 4, 8, 4, 9, 8, 1, 7, 2, 6, 5, 6, 1, 5, 1, 4, 9, 4, 7, 5, 0, 8, 1, 8, 8, 1, 8, 6, 9, 7, 0, 9, 6, 1, 3, 2, 7, 1, 5, 9, 5, 5, 8, 3, 6, 8, 9, 3, 9, 9, 8, 3, 5, 4, 1
Offset: 0
Examples
0.899212680785500886257698838775288182435045411706848498172656...
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.5 Fibonacci factorials, p. 10.
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants. p. 1.
- Adrian R. Kitson, The regularized product of the Fibonacci numbers. (2006) arXiv:math/0608187 [math.HO]
Crossrefs
Cf. A062073.
Programs
-
Mathematica
c = QPochhammer[-1/GoldenRatio^2]; delta = 5^(1/4)*Exp[-Log[5]^2/(8*Log[GoldenRatio])]*c/GoldenRatio^(1/12); RealDigits[delta, 10, 103] // First
Formula
delta = 5^(1/4)*exp(-log(5)^2/(8*log(phi)))*c/phi^(1/12), where phi is the golden ratio and c is the Fibonacci factorial constant (c = A062073 = 1.226742...).