cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242011 Decimal expansion of sum_{k>=0} (-1)^k*(log(4k+1)/(4k+1)+log(4k+3)/(4k+3)).

This page as a plain text file.
%I A242011 #13 Jan 17 2020 05:39:03
%S A242011 0,2,3,0,0,4,5,8,7,8,6,2,7,3,6,0,1,0,3,1,7,9,9,2,6,0,2,1,4,5,1,4,6,9,
%T A242011 6,2,3,1,8,6,6,7,6,4,1,4,7,5,0,8,8,3,2,9,0,9,6,3,8,0,0,6,2,0,6,5,8,1,
%U A242011 4,5,4,7,6,3,5,4,5,5,9,4,1,4,0,3,1,5,6,6,2,3,6,1,5,5,8,9,1,9,6,7
%N A242011 Decimal expansion of sum_{k>=0} (-1)^k*(log(4k+1)/(4k+1)+log(4k+3)/(4k+3)).
%H A242011 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants.</a> p. 8.
%F A242011 (Pi/(2*sqrt(3)))*(log(Gamma(1/8)/Gamma(3/8)/(Gamma(5/8)/Gamma(7/8))) - (gamma + log(2*Pi))), where gamma is Euler's constant and Gamma(x) is the Euler Gamma function.
%e A242011 0.02300458786273601031799260214514696231866764147508832909638...
%t A242011 s = (Pi/(2*Sqrt[2]))*(Log[Gamma[1/8]*Gamma[3/8]/(Gamma[5/8]*Gamma[7/8])] - (EulerGamma + Log[2*Pi])); Join[{0}, RealDigits[s, 10, 99] // First]
%Y A242011 Cf. A203142, A203143, A203144, A203146.
%K A242011 nonn,cons,easy
%O A242011 0,2
%A A242011 _Jean-François Alcover_, Aug 11 2014