A242015 Decimal expansion of the Euler-Kronecker constant (as named by P. Moree) for non-hypotenuse numbers.
4, 0, 9, 5, 0, 6, 9, 0, 3, 4, 1, 1, 8, 9, 5, 7, 6, 8, 2, 4, 5, 1, 1, 6, 3, 9, 5, 1, 8, 3, 7, 9, 7, 6, 3, 7, 0, 4, 3, 1, 9, 9, 5, 2, 9, 0, 9, 8, 4, 7, 1, 6, 6, 3, 2, 3, 4, 8, 9, 0, 9, 7, 6, 6, 8, 2, 7, 2, 5, 6, 9, 2, 7, 8, 0, 6, 3, 7, 6, 8, 8, 9, 2, 1, 2, 7, 2, 9, 8, 5, 0, 7, 0, 4, 4, 6, 0, 5, 2, 8, 7, 7, 5
Offset: 0
Examples
-0.40950690341189576824511639518379763704319952909847166323489...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constants, p. 99.
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2022, p. 11.
- Pieter Moree, Counting numbers in multiplicative sets: Landau versus Ramanujan, arXiv:1110.0708v1 [math.NT], 4 Oct 2011, p. 13.
- Daniel Shanks, The second-order term in the asymptotic expansion of B(x), Mathematics of Computation 18 (1964), pp. 75-86.
- Eric Weisstein's World of Mathematics, Landau-Ramanujan Constant.
Programs
-
Mathematica
digits = 103; m0 = 5; dm = 5; beta[x_] := 1/4^x*(Zeta[x, 1/4] - Zeta[x, 3/4]); L = Pi^(3/2)/Gamma[3/4]^2*2^(1/2)/2; Clear[f]; f[m_] := f[m] = 1/2*(1 - Log[Pi*E^EulerGamma/(2*L)]) - 1/4*NSum[Zeta'[2^k]/Zeta[2^k] - beta'[2^k]/beta[2^k] + Log[2]/(2^(2^k) - 1), {k, 1, m}, WorkingPrecision -> digits + 10]; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits] != RealDigits[f[m - dm], 10, digits], m = m + dm]; RealDigits[1 - 2*f[m] - EulerGamma + Log[Pi] - 4*Log[Gamma[3/4]], 10, digits] // First
Formula
Equals 1 - 2*A244662.
Comments