A242021 Decimal expansion of the asymptotic growth rate of the number of odd coefficients in Pascal trinomial triangle mod 2.
7, 2, 7, 4, 5, 0, 9, 1, 3, 2, 4, 0, 0, 2, 2, 8, 1, 4, 3, 2, 6, 6, 1, 7, 2, 3, 5, 5, 6, 4, 5, 2, 0, 4, 5, 2, 5, 9, 0, 1, 7, 1, 0, 3, 5, 2, 0, 2, 1, 2, 7, 7, 5, 3, 0, 7, 1, 5, 6, 6, 8, 3, 9, 8, 7, 1, 8, 4, 1, 5, 0, 8, 8, 2, 8, 1, 4, 5, 2, 4, 2, 4, 7, 5, 3, 2, 9, 3, 1, 6, 3, 1, 0, 9, 1, 0, 3, 1, 6, 4
Offset: 0
Examples
0.727450913240022814326617235564520452590171035202127753...
Links
- Steven Finch, Pascal Sebah and Zai-Qiao Bai, Odd Entries in Pascal's Trinomial Triangle (arXiv:0802.2654) p. 10.
Programs
-
Mathematica
mu = Sort[Table[Root[x^4 - 3*x^3 - 2*x^2 + 2*x + 4, x, n], {n, 1, 4}], N[Abs[#1]] < N[Abs[#2]]&] // Last; RealDigits[Log[Abs[mu]]/Log[2] - 1, 10, 100] // First
Formula
log(abs(mu))/log(2) - 1, where mu is the root of x^4 - 3*x^3 - 2*x^2 + 2*x + 4 with maximum modulus.