A242022 Decimal expansion of the asymptotic growth rate of the number of odd coefficients in Pascal quintinomial triangle mod 2.
7, 8, 9, 6, 4, 1, 8, 5, 0, 5, 3, 0, 7, 6, 8, 5, 6, 3, 9, 0, 1, 5, 4, 7, 2, 6, 7, 0, 6, 6, 4, 1, 4, 0, 1, 8, 9, 9, 0, 8, 2, 9, 5, 5, 3, 5, 9, 2, 6, 8, 3, 8, 9, 3, 5, 2, 3, 6, 5, 3, 8, 7, 9, 4, 6, 2, 2, 3, 6, 9, 5, 8, 7, 4, 9, 0, 3, 0, 1, 9, 3, 4, 9, 7, 8, 8, 9, 0, 8, 4, 0, 7, 7, 8, 4, 2, 9, 4, 4, 6
Offset: 0
Examples
0.7896418505307685639015472670664140189908295535926838935...
Links
- Steven Finch, Pascal Sebah and Zai-Qiao Bai, Odd Entries in Pascal's Trinomial Triangle (arXiv:0802.2654) p. 10.
Crossrefs
Cf. A242021.
Programs
-
Mathematica
mu = Sort[Table[Root[x^4 - x^3 - 6*x^2 - 4*x - 16, x, n], {n, 1, 4}], N[Abs[#1]] < N[Abs[#2]] &] // Last; RealDigits[Log[mu]/Log[2] - 1, 10, 100] // First
Formula
log(abs(mu))/log(2) - 1, where mu = 3.4572905... is the root of x^4 - x^3 - 6*x^2 - 4*x - 16 with maximum modulus.