A242032 A sequence related to lower bounds for the number of distinct differentiable structures on spheres of the form S^(4*k-1).
2, 2, 7, 31, 127, 73, 1414477, 8191, 16931177, 5749691557, 91546277357, 3324754717, 1982765468311237, 22076500342261, 65053034220152267, 925118910976041358111, 16555640865486520478399, 8089941578146657681, 29167285342563717499865628061
Offset: 0
Keywords
Examples
a( 0) = 2 a( 1) = 2 a( 2) = 7 a( 3) = 31 a( 4) = 127 a( 5) = 73 a( 6) = 23 * 89 * 691 a( 7) = 8191 a( 8) = 31 * 151 * 3617 a( 9) = 43867 * 131071 a(10) = 283 * 617 * 524287 a(11) = 127 * 131 * 337 * 593 a(12) = 47 * 103 * 178481 * 2294797 a(13) = 31 * 601 * 1801 * 657931
Links
- Helaman Rolfe Pratt Ferguson, Bernoulli Numbers and Non-Standard Differentiable Structures on (4k-1)-Spheres, The Fibonacci Quarterly, Vol. 11(1), 1973.
- Friedrich Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, 1956, Springer Berlin.
- Friedrich Hirzebruch, Singularities and exotic spheres Séminaire Bourbaki, 10 (1966-1968), Exp. No. 314.
- John Milnor, Differentiable Structures on Spheres, American Journal of Mathematics, Vol. 81, No. 4 (Oct., 1959), pp. 962-972.
- John W. Milnor and Michel A. Kervaire, Bernoulli numbers, homotopy groups, and a theorem of Rohlin, J. A. Todd (ed.) , Proc. Internat. Congress Mathematicians (Edinburgh, 1958) , Cambridge Univ. Press (1960) pp. 454-458.
- Dinesh S. Thakur, A note on numerators of Bernoulli numbers, Proc. Amer. Math. Soc. 140 (2012), 3673-3676.
- Wikipedia, Exotic sphere
Programs
-
Mathematica
h[x_] := Zeta[2x] (4^x-2); a[n_] := Module[{M, k, p}, M = Denominator[h[Quotient[n+1, 2]] h[Quotient[ n, 2]]/h[n]]; k = 2 Quotient[n+1, 2]; p = 2; While[p < k, While[ Divisible[M, p], M = M/p]; p = NextPrime[p]]; M]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 12 2019, from Sage code *)
-
Sage
def A242032(n): h = lambda x: zeta(2*x)*(4^x-2) M = Integer((h((n+1)//2)*h(n//2)/h(n)).denominator()) k = 2*((n+1)//2) P = Primes() p = P.first() while p < k: while p.divides(M): M /= p p = P.next(p) return M [A242032(n) for n in (0..30)]
Comments