cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242035 The numerator of h(n-k)*h(k)/h(n) where h(x) = zeta(2*x)*(4^x-2) and k = floor(n/2).

This page as a plain text file.
%I A242035 #9 Aug 18 2014 16:58:11
%S A242035 1,1,5,49,343,341,1374230,562991,117628797,5722552563,274111769750,
%T A242035 767094923209,29727071936873882,860722536439030,65045120396044500,
%U A242035 1850097086237495825037,16555136396811464938269,962684710425111932621,29167062964422333027973288250
%N A242035 The numerator of h(n-k)*h(k)/h(n) where h(x) = zeta(2*x)*(4^x-2) and k = floor(n/2).
%o A242035 (Sage)
%o A242035 h = lambda x: zeta(2*x)*(4^x-2)
%o A242035 A242035 = lambda n: Integer((h((n+1)//2)*h(n//2)/h(n)).numerator())
%o A242035 [A242035(n) for n in range(19)]
%Y A242035 Cf. A246053 (denominator), A242050, A246051, A246052.
%K A242035 nonn,frac
%O A242035 0,3
%A A242035 _Peter Luschny_, Aug 12 2014