A242053 Decimal expansion of 1/log(2)-1, the mean value of a random variable following the Gauss-Kuzmin distribution.
4, 4, 2, 6, 9, 5, 0, 4, 0, 8, 8, 8, 9, 6, 3, 4, 0, 7, 3, 5, 9, 9, 2, 4, 6, 8, 1, 0, 0, 1, 8, 9, 2, 1, 3, 7, 4, 2, 6, 6, 4, 5, 9, 5, 4, 1, 5, 2, 9, 8, 5, 9, 3, 4, 1, 3, 5, 4, 4, 9, 4, 0, 6, 9, 3, 1, 1, 0, 9, 2, 1, 9, 1, 8, 1, 1, 8, 5, 0, 7, 9, 8, 8, 5, 5, 2, 6, 6, 2, 2, 8, 9, 3, 5, 0, 6, 3, 4, 4
Offset: 0
Examples
0.4426950408889634073599246810018921374266459541529859341354494...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.17 Gauss-Kuzmin-Wirsing constant, p. 151.
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, 2.17 p. 21.
- Michael Penn, This infinite series is crazy!, YouTube video, 2020.
- Index entries for transcendental numbers
Crossrefs
Cf. A007525.
Programs
-
Mathematica
RealDigits[1/Log[2] - 1, 10, 99] // First
Formula
Equals (1/log(2))*Integral_{x=0..1} x/(1+x) dx.
Equals Sum_{k>=1} 1/(2^k*(1 + 2^(2^(-k)))). - Amiram Eldar, May 28 2021