A242055 Decimal expansion of c, a constant appearing in the asymptotic lower bound of the size of a restricted difference set.
1, 5, 6, 0, 2, 7, 7, 9, 4, 2, 0, 4, 1, 8, 7, 9, 7, 0, 2, 1, 0, 2, 0, 7, 7, 3, 8, 1, 5, 6, 8, 4, 6, 3, 7, 5, 6, 3, 7, 3, 9, 9, 5, 7, 4, 5, 9, 4, 9, 5, 4, 2, 5, 3, 8, 5, 3, 7, 1, 2, 3, 9, 2, 9, 7, 8, 0, 6, 8, 4, 9, 4, 8, 2, 7, 8, 5, 1, 8, 2, 4, 4, 4, 3, 6, 3, 3, 1, 6, 3, 4, 7, 1, 8, 5, 5, 8, 6, 3, 0, 5, 3, 3
Offset: 1
Examples
1.560277942041879702102077381568463756373995745949542538537...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.28 p. 188.
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants. 2.28 p. 26.
Crossrefs
Cf. A115365.
Programs
-
Mathematica
digits = 103; theta = t /. FindRoot[Tan[t] == t, {t, 4}, WorkingPrecision -> digits+5]; c = Sqrt[2*(1 - Sin[theta]/theta)]; RealDigits[c, 10, digits] // First
Formula
c = sqrt(2*(1 - sin(theta)/theta)), where theta is the smallest positive zero of tan(t)-t (theta = A115365).