cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242056 Decimal expansion of 2*Pi*phi(0), a constant appearing in connection with a study of zeros of the integral of xi(z), where phi(t) and xi(z) are functions related to Riemann's zeta function (see Finch reference for the definition of these functions).

This page as a plain text file.
%I A242056 #32 Jan 17 2020 05:42:49
%S A242056 2,8,0,6,6,7,9,4,0,1,7,7,7,6,9,2,1,8,3,0,5,0,9,1,4,2,7,3,8,1,8,1,5,4,
%T A242056 5,6,4,1,5,4,9,8,0,0,2,8,5,0,2,2,5,6,3,5,5,9,4,2,4,6,9,7,1,2,7,0,6,9,
%U A242056 9,2,2,6,5,6,0,1,3,8,3,0,2,1,8,2,2,4,4,8,9,6,6,2,3,0,3,6,2,6,6,0,9,6,6,5,3
%N A242056 Decimal expansion of 2*Pi*phi(0), a constant appearing in connection with a study of zeros of the integral of xi(z), where phi(t) and xi(z) are functions related to Riemann's zeta function (see Finch reference for the definition of these functions).
%D A242056 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.32 De Bruijn-Newman constant, p. 203.
%H A242056 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants.</a> 2.32 p. 27.
%H A242056 Jeffrey C. Lagarias and David Montague, <a href="http://arxiv.org/abs/1106.4348">The Integral of the Riemann xi-function.</a> arXiv:1106.4348 [math.NT], 2011.
%H A242056 Jeffrey C. Lagarias and David Montague, <a href="http://doi.org/10.14992/00008623 ">The Integral of the Riemann xi-function</a>, Commentarii Mathematici Universitatis Sancti Pauli 60 (2011), No. 1-2, pp. 143-169.
%F A242056 Equals 2*Pi*sum_{n>=1} (Pi*n^2*(2*Pi*n^2-3))/e^(Pi*n^2).
%e A242056 2.8066794017776921830509142738181545641549800285022563559424697...
%t A242056 digits = 105; 2*Pi*NSum[(Pi*n^2*(2*Pi*n^2-3))/E^(Pi*n^2), {n, 1, Infinity}, WorkingPrecision -> digits+5] // RealDigits[#, 10, digits]& // First
%o A242056 (PARI) 2*Pi*suminf(n=1, t=Pi*n^2; t*(2*t-3)/exp(t)) \\ _Charles R Greathouse IV_, Mar 10 2016
%K A242056 nonn,cons
%O A242056 1,1
%A A242056 _Jean-François Alcover_, Aug 13 2014