This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242059 #18 Aug 20 2014 02:32:31 %S A242059 1,5,7,5,1,11,5,13,5,7,5,7,5,23,5,1,5,7,5,11,5,37,5,7,5,43,7,5,47,11, %T A242059 5,17,5,53,7,5,13,5,61,5,7,5,67,7,5,11,71,5,13,5,7,5,1,11,5,7,5,7,5, %U A242059 31,5,5,7,5,103,5,11,17,5,7,37,5,113,11,7,5,13,5 %N A242059 lpf_3(A242057(n)-1), where lpf_3(n) = lpf(n/3^t) (cf. A020639) such that 3^t (t>=0) is the maximal power of 3 which divides n. %C A242059 An analog of A242033. %H A242059 Jens Kruse Andersen, <a href="/A242059/b242059.txt">Table of n, a(n) for n = 1..10000</a> %t A242059 lpf[n_]:=lpf[n]=First[First[FactorInteger[n]]]; %t A242059 lpf3[n_]:=lpf3[n]=If[#==1,1,lpf[#]]&[n/3^IntegerExponent[n,3]] %t A242059 Map[lpf3[#-1]&,Select[Range[4,300,2],lpf3[#-1]<lpf3[#-3]&]](* _Peter J. C. Moses_, Aug 13 2014 *) %o A242059 (PARI) lpf3(n)=m=n/3^valuation(n, 3); if(m>1, factor(m)[1,1], 1) %o A242059 apply(n->lpf3(n-1), select(n->lpf3(n-1)<lpf3(n-3), vector(200, x, 2*x))) \\ _Jens Kruse Andersen_, Aug 19 2014 %Y A242059 Cf. A245024, A243937, A242057, A242058, A242033, A242034, A020639. %K A242059 nonn %O A242059 1,2 %A A242059 _Vladimir Shevelev_, Aug 13 2014 %E A242059 More terms from _Peter J. C. Moses_, Aug 13 2014