cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242060 Lpf_3(A242058(n)-3), where lpf_3(n) = lpf(n/3^t) (cf. A020639) such that 3^t (t>=0) is the maximal power of 3 which divides n.

This page as a plain text file.
%I A242060 #16 Aug 21 2014 23:15:11
%S A242060 1,5,1,11,5,17,7,1,29,5,13,41,5,7,17,5,19,59,5,23,71,5,7,1,5,29,7,5,
%T A242060 11,101,5,107,37,5,7,11,5,43,5,137,5,7,149,5,7,5,13,19,5,59,179,5,7,
%U A242060 191,5,197,5,11,5,7,13,5,227,7,5,79,239,1,5,13,83,5,7
%N A242060 Lpf_3(A242058(n)-3), where lpf_3(n) = lpf(n/3^t) (cf. A020639) such that 3^t (t>=0) is the maximal power of 3 which divides n.
%C A242060 An analog of A242034. Records are lesser numbers of twin primes.
%t A242060 lpf[n_]:=lpf[n]=First[First[FactorInteger[n]]];
%t A242060 lpf3[n_]:=lpf3[n]=If[#==1,1,lpf[#]]&[n/3^IntegerExponent[n,3]]
%t A242060 Map[lpf3[#-3]&,Select[Range[4,300,2],lpf3[#-1]>lpf3[#-3]&]](* _Peter J. C. Moses_, Aug 13 2014 *)
%Y A242060 Cf. A245024, A243937, A242057, A242058, A242059, A242033, A242034.
%K A242060 nonn
%O A242060 1,2
%A A242060 _Vladimir Shevelev_, Aug 13 2014
%E A242060 More terms from _Peter J. C. Moses_, Aug 13 2014